knitr::opts_chunk$set( collapse = TRUE, comment = "#>", out.width = "100%" )
This step is used to get the absolute quantification data of all lipids in all samples. If you have not finished the previous step, please click here:
Step 2: get relative quantification data.
If you have finished this step, click here to next step:
Step 4: output and organize results.
You should have finished step 1 and step 2.
Then we should read the relative quantification data of internal standards and lipids.
library(lipidflow) library(tidyverse) library(openxlsx)
##internal standard relative quantification data is_quantification_table = readxl::read_xlsx("example/POS/is_relative_quantification/is_quantification_table.xlsx") ##lipid relative quantification data lipid_quantification_table = readxl::read_xlsx("example/POS/lipid_relative_quantification/lipid_quantification_table.xlsx")
is_quantification_table
is the relative quantification data for internal standards, and lipid_quantification_table
is the relative quantification data for lipids.
We also need to get the sample information.
sample_info_pos = generate_sample_info(path = "example/POS")
Then the match_item
should be set as:
match_item_pos = list( "Cer" = "d18:1 (d7)-15:0 Cer", "ChE" = c("18:1(d7) Chol Ester", "Cholesterol (d7)"), "Chol" = "Cholesterol (d7)", "DG" = "15:0-18:1(d7) DAG", "LPC" = "18:1(d7) Lyso PC", "LPE" = "18:1(d7) Lyso PE", "MG" = "18:1 (d7) MG", "PA" = "15:0-18:1(d7) PA (Na Salt)", "PC" = "15:0-18:1(d7) PC", "PE" = "15:0-18:1(d7) PE", "PG" = "15:0-18:1(d7) PG (Na Salt)", "PI" = "15:0-18:1(d7) PI (NH4 Salt)", "PPE" = "C18(Plasm)-18:1(d9) PE", "PS" = "15:0-18:1(d7) PS (Na Salt)", "SM" = "d18:1-18:1(d9) SM", "TG" = "15:0-18:1(d7)-15:0 TAG" )
It means that all the Cer
class lipids will use internal standard d18:1 (d7)-15:0 Cer
for absolute quantification.
Then run get_absolute_quantification()
function to get the absolute quantification data of positive mode.
absolute_data_pos = get_absolute_quantification( path = "example/POS/", is_quantification_table = is_quantification_table, lipid_quantification_table = lipid_quantification_table, sample_info = sample_info_pos, match_item = match_item_pos )
Now all the absolute quantification results are outputted in example/POS/absolute_quantification
folder.
Negative mode is same with positive mode:
is_quantification_table = readxl::read_xlsx("example/NEG/is_relative_quantification/is_quantification_table.xlsx") lipid_quantification_table = readxl::read_xlsx("example/NEG/lipid_relative_quantification/lipid_quantification_table.xlsx")
sample_info_neg = generate_sample_info(path = "example/NEG")
Then the match_item
should be set as:
match_item_neg = list( "Cer" = "d18:1 (d7)-15:0 Cer", "Chol" = "Cholesterol (d7)", "ChE" = c("18:1(d7) Chol Ester", "Cholesterol (d7)"), "LPC" = "18:1(d7) Lyso PC", "LPE" = "18:1(d7) Lyso PE", "PC" = "15:0-18:1(d7) PC", "PE" = "15:0-18:1(d7) PE", "PG" = "15:0-18:1(d7) PG (Na Salt)", "PI" = "15:0-18:1(d7) PI (NH4 Salt)", "PPE" = "C18(Plasm)-18:1(d9) PE", "PS" = "15:0-18:1(d7) PS (Na Salt)", "SM" = "d18:1-18:1(d9) SM" )
Then run get_absolute_quantification()
function to get the absolute quantification data of negative mode.
absolute_data_neg = get_absolute_quantification( path = "example/NEG", is_quantification_table = is_quantification_table, lipid_quantification_table = lipid_quantification_table, sample_info = sample_info_neg, match_item = match_item_neg )
Now all the absolute quantification results are outputted in example/NEG/absolute_quantification
folder.
Next, we need to combine positive and negative mode absolute quantification data together.
combine_pos_neg_quantification( path = "example/Result", express_data_abs_ug_ml_pos = absolute_data_pos$express_data_abs_ug_ml, express_data_abs_um_pos = absolute_data_pos$express_data_abs_um, variable_info_abs_pos = absolute_data_pos$variable_info_abs, express_data_abs_ug_ml_neg = absolute_data_neg$express_data_abs_ug_ml, express_data_abs_um_neg = absolute_data_neg$express_data_abs_um, variable_info_abs_neg = absolute_data_neg$variable_info_abs )
All the results are outputted into the example/Result
folder.
Next we need to output and organize some results (plots). Please click here:
Step 4: output and organize results
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.