knitr::opts_chunk$set(echo = TRUE, message=FALSE,warning=FALSE)
Save some time. Quick & Dirty model diagnostic plots in ggplot.
1. Redo base plots in ggplot
par(mfrow=c(2,3)) lm.1 <- lm(mpg ~ wt,data=mtcars) plot(lm.1,which=1:6)
2. Create ggplot versions ~ make tidy
library(tidyverse) library(broom) My.Mod <- lm.1 #Base plot(My.Mod,which=1) #GGplot D1 <- augment(My.Mod) %>% ggplot(aes(x=.fitted,y=.std.resid)) + geom_point() + geom_smooth(se=FALSE,colour="red",size=.25) + geom_hline(yintercept=0,linetype=3) + labs(title="Residuls vs Fitted",subtitle=My.Mod$call) D1
3. Functionalise
How to determine models?
What sort of arguments, functionality?
PAss through
Design ?
## What should it look like? # Pehaps??? MyModel %>% ggdiag() Data %>% MyModel %>% ggdiag() # plot index no or rather name? Data %>% MyModel %>% ggdiag(Plot=1:2) Data %>% MyModel %>% ggdiag(Plot=c("RVFit","qq"))
4. Ensure plays nice with existing
x. Other Thoughts
Practice with RProj, Git.
Don't re-invent the wheel - just make quicker to change the flat.
Logic for text annotation? How determine cutoff.
Starting assumptiom? Start from a) model (eg lm) or b) tidy output of model
What are the statistics that determine highlighting text labels in base plots?
# How do you see how current plot is coded? # This doesnt help plot
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.