esmr | R Documentation |
Empirical Shrinkage Multivariable MR
esmr
esmr(
beta_hat_X,
se_X,
beta_hat_Y = NULL,
se_Y = NULL,
G = NULL,
R = NULL,
pval_thresh = NULL,
variant_ix = NULL,
ld_scores = NULL,
RE = NULL,
tau_init = NULL,
fix_tau = FALSE,
ebnm_fn = flashier::flash_ebnm(prior_family = "point_normal", optmethod = "nlm"),
g_init = NULL,
fix_g = FALSE,
max_iter = 100,
sigma_beta = Inf,
tol = "default",
restrict_dag = TRUE,
direct_effect_template = NULL,
direct_effect_init = NULL,
beta_joint = TRUE,
augment_G = TRUE
)
beta_hat_X |
Matrix of SNP-exposure associations (p by K) |
se_X |
matrix of standard errors of beta_hat_X |
beta_hat_Y |
Vector of SNP-outcome associations (length p) |
se_Y |
Standard errors of beta_hat_Y |
G |
G matrix. If NULL, G will be estimated using the method given in g_type. |
R |
Optional correlation matrix for overlapping samples. |
pval_thresh |
p-value threshold for estimation |
variant_ix |
Instead of using pval_thresh, directly specify the indices of variants used for estimation. |
ebnm_fn |
Options prior distribution family. Defaults to point-normal. |
max_iter |
Maximum number of iterations |
sigma_beta |
Optional prior variance for causal parameters |
tol |
Convergence tolerance |
beta_joint |
Use joint updates for beta (suggest TRUE) |
augment_G |
Augment estimated G |
g_type |
Method to estimate G. Suggest "gfa" |
Jean Morrison <jvmorr@umich.edu>
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.