esmr: Empirical Shrinkage Multivariable MR

View source: R/esmr.R

esmrR Documentation

Empirical Shrinkage Multivariable MR

Description

Empirical Shrinkage Multivariable MR

esmr

Usage

esmr(
  beta_hat_X,
  se_X,
  beta_hat_Y = NULL,
  se_Y = NULL,
  G = NULL,
  R = NULL,
  pval_thresh = NULL,
  variant_ix = NULL,
  ld_scores = NULL,
  RE = NULL,
  tau_init = NULL,
  fix_tau = FALSE,
  ebnm_fn = flashier::flash_ebnm(prior_family = "point_normal", optmethod = "nlm"),
  g_init = NULL,
  fix_g = FALSE,
  max_iter = 100,
  sigma_beta = Inf,
  tol = "default",
  restrict_dag = TRUE,
  direct_effect_template = NULL,
  direct_effect_init = NULL,
  beta_joint = TRUE,
  augment_G = TRUE
)

Arguments

beta_hat_X

Matrix of SNP-exposure associations (p by K)

se_X

matrix of standard errors of beta_hat_X

beta_hat_Y

Vector of SNP-outcome associations (length p)

se_Y

Standard errors of beta_hat_Y

G

G matrix. If NULL, G will be estimated using the method given in g_type.

R

Optional correlation matrix for overlapping samples.

pval_thresh

p-value threshold for estimation

variant_ix

Instead of using pval_thresh, directly specify the indices of variants used for estimation.

ebnm_fn

Options prior distribution family. Defaults to point-normal.

max_iter

Maximum number of iterations

sigma_beta

Optional prior variance for causal parameters

tol

Convergence tolerance

beta_joint

Use joint updates for beta (suggest TRUE)

augment_G

Augment estimated G

g_type

Method to estimate G. Suggest "gfa"

Author(s)

Jean Morrison <jvmorr@umich.edu>


jean997/mrScan documentation built on Dec. 20, 2024, 3:39 a.m.