View source: R/stats_glm_predict_sims.R
add_predicted_sims.glm | R Documentation |
Generate simulations
from a glm model incorporating either error in
fitted error. Simulations explore the possible space
of what a model might predict rather than an interval for use
in comparison to Bayesian posteriors for non-Bayesian models. The
output format and functions draw inspiration from the
tidybayes::tidybayes()
library and
merTools::predictInterval()
## S3 method for class 'glm' add_predicted_sims( newdata, mod, n_sims = 1000, seed = NULL, weights = 1, type = c("predict", "fit", "linpred"), ... )
newdata |
a data.frame of new data to predict |
mod |
An lm model to simulate from. |
n_sims |
number of simulation samples to construct |
seed |
numeric, optional argument to set seed for simulations |
weights |
numeric, optional argument for binomial models that need a number of trials |
type |
Character defining if we are looking at fit or predict intervals. |
... |
Unused dots for compatibility with generic functions. |
A tibble::tibble with information about simulate values.
Other glm:
add_fitted_sims.glm()
# Gamma clotting <- data.frame( u = c(5,10,15,20,30,40,60,NA,100), lot1 = c(118,58,42,35,27,25,21,19,18), lot2 = c(69,35,26,21,18,16,13,12,12)) mod <- glm(lot1 ~ log(u) + lot2, data = clotting, family = Gamma) sims_pred <- add_predicted_sims(clotting, mod) head(sims_pred) # Binomial # example from Venables and Ripley (2002, pp. 190-2.) ldose <- rep(0:5, 2) numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16) sex <- factor(rep(c("M", "F"), c(6, 6))) SF <- cbind(numdead, numalive = 20-numdead) budworm.lg <- glm(SF ~ sex*ldose, family = binomial) dat <- data.frame(sex = factor(c("M", "F", "M", "F")), ldose = c(0,0,5,5)) sims_pred_b <- add_predicted_sims(dat, budworm.lg, weights = 20) head(sims_pred_b)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.