## ----setup, include=FALSE, eval=F, echo=T--------------------------------
# knitr::opts_chunk$set(echo = TRUE)
## ----load.catnat, eval=F, echo=T-----------------------------------------
# # installation
# if (!require("devtools")) install.packages("devtools")
# if (!require("catnat")) devtools::install_github("alexanderbates/catnat")
# if (!require("fafbseg")) install.packages("jefferis/fafbseg")
#
# # Load catnat
# library(catnat)
# library(fafbseg)
## ----get.neurons, eval=F, echo=T-----------------------------------------
# # Login to CATMAID
# # see ?catmaid::catmaid_login() for details
#
# # Read some interesting neurons from CATMAID
# a2sc = read.neurons.catmaid("name:MBON a2sc")
#
# # Let's see what we hsve
# print(a2sc[,])
## ----tracing.sheets, eval=F, echo=T--------------------------------------
# # Generate tracing sheet
# tl.incoming = fafb_seg_tracing_list(skids = names(a2sc),connector_ids = NULL, direction = "incoming", unique = FALSE)
# tl.outgoing= fafb_seg_tracing_list(skids = names(a2sc),connector_ids = NULL, direction = "outgoing", unique = FALSE)
## ----subset.for.mbona2sc.r, eval=F, echo=T-------------------------------
# # Generate tracing sheet
# tl.incoming = subset(tl.incoming,skid==names(a2sc)[1])
# tl.outgoing = subset(tl.outgoing,skid==names(a2sc)[1])
## ----subset.ngl_id, eval=F, echo=T---------------------------------------
# # Generate tracing sheet
# tl.incoming = tl.incoming[!duplicated(tl.incoming$ngl_id),]
# tl.outgoing = tl.outgoing[!duplicated(tl.outgoing$ngl_id),]
## ----assign.neuropil, eval=F, echo=T-------------------------------------
# # Assign points to neuropils
# pin.in = points_in_neuropil(x=tl.incoming[,c("x","y","z")],brain = elmr::FAFB14NP.surf, alpha = 30000)
# pin.out = points_in_neuropil(x=tl.outgoing[,c("x","y","z")],brain = elmr::FAFB14NP.surf, alpha = 30000)
#
# # Add to data frame
# tl.incoming$neuropil = pin.in$neuropil
# tl.outgoing$neuropil = pin.out$neuropil
#
# # And now if you want, you can subset
# tl.incoming = subset(tl.incoming, neuropil=="LH_R")
# tl.outgoing = subset(tl.outgoing, neuropil=="LH_R")
## ----save.csv, include = FALSE, eval=F, echo=T---------------------------
# write.csv2(x = tl.incoming,file = "/Users/abates/projects/centrifugal/data/tracing/MBONa2scRight_In.csv")
# write.csv2(x = tl.outgoing,file = "/Users/abates/projects/centrifugal/data/tracing/MBONa2scRight_Out.csv")
## ----neuronvolume, eval=F, echo=T----------------------------------------
# neuron = read.neurons.catmaid("1299700")
# neuronvolume = fafb_segs_stitch_volumes(neuron = neuron, map = TRUE)
## ----neuronvolume3d, eval=F, echo=T--------------------------------------
# nopen3d()
# neuronvolume3d(neuronvolume)
## ----update.radii, eval=F, echo=T----------------------------------------
# # This updates CATMAID. In this example, it updates the fafbseg `v14-seg` envrionment neuron.
# fafbseg_update_node_radii(x = neuron, conn = fafb_seg_conn(), method = "nearest.mesh.point")
# # This is rather slow, but you could run it overnight for a bunch of neurons of interest if you wanted
#
# # If you made a mistake, you can return all radii to -1 (default ) by
# catmaid_update_radius(tnids = neuron[[1]]$d$PointNo, radii = -1)
## ----controlled.upload.to.CATMAID, eval=F, echo=T------------------------
# uploaded = catmaid_controlled_upload(x = "name:ASB Tester",name = "ASB Tester from v14-seg",
# search.range.nm = 1000, annotations = "ASB Test v14-seg Upload",
# fafbseg = TRUE, join = TRUE, join,tag = "TODO",
# brain = elmr::FAFB14, lock = TRUE)
## ----auto.attach.connectors, eval=F, echo=T------------------------------
# fafbseg_join_connectors_in_ngl_volumes("annotation:ASB Test v14-seg Upload",
# putatively.connected.skids="annotation:WTPN2017_AL_PN")
## ----batch.delete, eval=F, echo=T----------------------------------------
# catmaid_delete_neurons("annotation:ASB Test v14-seg Upload")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.