#' The Moore-Penrose Inverse of the Duplication Matrix
#'
#' The Moore-Penrose inverse of the duplication matrix.
#'
#' The Moore-Penrose inverse of the duplication matrix
#' \eqn{\mathbf{D}_{k}}
#' is the
#' \eqn{
#' \frac{1}{2} k \left( k + 1 \right) \times k^2
#' }
#' matrix given by
#'
#' \deqn{
#' \mathbf{D}_{k}^{+}
#' =
#' \left(
#' \mathbf{D}_{k}^{\prime}
#' \mathbf{D}_{k}
#' \right)^{-1}
#' \mathbf{D}_{k}^{\prime}
#' }
#'
#' where
#'
#' \deqn{
#' \mathbf{D}_{k}^{+}
#' \mathrm{vec}
#' \left(
#' A
#' \right)
#' =
#' \mathrm{vech}
#' \left(
#' \mathbf{A}
#' \right)
#' \quad
#' \left(
#' \mathbf{A} = \mathbf{A}^{\prime}
#' \right)
#' }
#'
#' \eqn{
#' \mathrm{vec} \left( \cdot \right)
#' }
#' is the vectorization of a matrix,
#' and
#' \eqn{
#' \mathrm{vech} \left( \cdot \right)
#' }
#' is the half-vectorization of a matrix.
#'
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @inheritParams dcap
#' @inherit references return
#'
#' @examples
#' pinv_of_dcap(3)
#' @family Symmetric Functions
#' @keywords linearAlgebra symmetric
#' @export
pinv_of_dcap <- function(k) {
.check_pos_scalar_int(k)
.pinv_of_dcap(
.dcap(k)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.