Description Usage Arguments Author(s) See Also Examples
Fits covariances and means of x, m, and y using structural equation modeling.
1 |
data |
|
Ivan Jacob Agaloos Pesigan
Other model fit functions:
beta_fit.ols_simulation_summary()
,
beta_fit.ols_simulation()
,
beta_fit.ols_task_summary()
,
beta_fit.ols_task()
,
beta_fit.ols()
,
beta_fit.sem.mlr_simulation_summary()
,
beta_fit.sem.mlr_simulation()
,
beta_fit.sem.mlr_task_summary()
,
beta_fit.sem.mlr_task()
,
beta_fit.sem.mlr()
,
beta_std_fit.sem.mlr_simulation_summary()
,
beta_std_fit.sem.mlr_simulation()
,
beta_std_fit.sem.mlr_task_summary()
,
beta_std_fit.sem.mlr_task()
,
beta_std_fit.sem.mlr()
,
exp_fit.ols_simulation_summary()
,
exp_fit.ols_simulation()
,
exp_fit.ols_task_summary()
,
exp_fit.ols_task()
,
exp_fit.ols()
,
exp_fit.sem.mlr_simulation_summary()
,
exp_fit.sem.mlr_simulation()
,
exp_fit.sem.mlr_task_summary()
,
exp_fit.sem.mlr_task()
,
exp_fit.sem.mlr()
,
exp_std_fit.sem.mlr_simulation_summary()
,
exp_std_fit.sem.mlr_simulation()
,
exp_std_fit.sem.mlr_task_summary()
,
exp_std_fit.sem.mlr_task()
,
exp_std_fit.sem.mlr()
,
fit.ols()
,
fit.sem.mlr()
,
fit.sem()
,
mvn_fit.ols_simulation_summary()
,
mvn_fit.ols_simulation()
,
mvn_fit.ols_task_summary()
,
mvn_fit.ols_task()
,
mvn_fit.ols()
,
mvn_fit.sem_simulation_summary()
,
mvn_fit.sem_simulation()
,
mvn_fit.sem_task_summary()
,
mvn_fit.sem_task()
,
mvn_fit.sem()
,
mvn_mar_10_fit.sem_simulation_summary()
,
mvn_mar_10_fit.sem_simulation()
,
mvn_mar_10_fit.sem_task_summary()
,
mvn_mar_10_fit.sem_task()
,
mvn_mar_10_fit.sem()
,
mvn_mar_20_fit.sem_simulation_summary()
,
mvn_mar_20_fit.sem_simulation()
,
mvn_mar_20_fit.sem_task_summary()
,
mvn_mar_20_fit.sem_task()
,
mvn_mar_20_fit.sem()
,
mvn_mar_30_fit.sem_simulation_summary()
,
mvn_mar_30_fit.sem_simulation()
,
mvn_mar_30_fit.sem_task_summary()
,
mvn_mar_30_fit.sem_task()
,
mvn_mar_30_fit.sem()
,
mvn_mcar_10_fit.sem_simulation_summary()
,
mvn_mcar_10_fit.sem_simulation()
,
mvn_mcar_10_fit.sem_task_summary()
,
mvn_mcar_10_fit.sem_task()
,
mvn_mcar_10_fit.sem()
,
mvn_mcar_20_fit.sem_simulation_summary()
,
mvn_mcar_20_fit.sem_simulation()
,
mvn_mcar_20_fit.sem_task_summary()
,
mvn_mcar_20_fit.sem_task()
,
mvn_mcar_20_fit.sem()
,
mvn_mcar_30_fit.sem_simulation_summary()
,
mvn_mcar_30_fit.sem_simulation()
,
mvn_mcar_30_fit.sem_task_summary()
,
mvn_mcar_30_fit.sem_task()
,
mvn_mcar_30_fit.sem()
,
mvn_mnar_10_fit.sem_simulation_summary()
,
mvn_mnar_10_fit.sem_simulation()
,
mvn_mnar_10_fit.sem_task_summary()
,
mvn_mnar_10_fit.sem_task()
,
mvn_mnar_10_fit.sem()
,
mvn_mnar_20_fit.sem_simulation_summary()
,
mvn_mnar_20_fit.sem_simulation()
,
mvn_mnar_20_fit.sem_task_summary()
,
mvn_mnar_20_fit.sem_task()
,
mvn_mnar_20_fit.sem()
,
mvn_mnar_30_fit.sem_simulation_summary()
,
mvn_mnar_30_fit.sem_simulation()
,
mvn_mnar_30_fit.sem_task_summary()
,
mvn_mnar_30_fit.sem_task()
,
mvn_mnar_30_fit.sem()
,
mvn_std_fit.sem_simulation_summary()
,
mvn_std_fit.sem_simulation()
,
mvn_std_fit.sem_task_summary()
,
mvn_std_fit.sem_task()
,
mvn_std_fit.sem()
,
vm_mod_fit.ols_simulation_summary()
,
vm_mod_fit.ols_simulation()
,
vm_mod_fit.ols_task_summary()
,
vm_mod_fit.ols_task()
,
vm_mod_fit.ols()
,
vm_mod_fit.sem.mlr_simulation_summary()
,
vm_mod_fit.sem.mlr_simulation()
,
vm_mod_fit.sem.mlr_task_summary()
,
vm_mod_fit.sem.mlr_task()
,
vm_mod_fit.sem.mlr()
,
vm_mod_std_fit.sem.mlr_simulation_summary()
,
vm_mod_std_fit.sem.mlr_simulation()
,
vm_mod_std_fit.sem.mlr_task_summary()
,
vm_mod_std_fit.sem.mlr_task()
,
vm_mod_std_fit.sem.mlr()
,
vm_sev_fit.ols_simulation_summary()
,
vm_sev_fit.ols_simulation()
,
vm_sev_fit.ols_task_summary()
,
vm_sev_fit.ols_task()
,
vm_sev_fit.ols()
,
vm_sev_fit.sem.mlr_simulation_summary()
,
vm_sev_fit.sem.mlr_simulation()
,
vm_sev_fit.sem.mlr_task_summary()
,
vm_sev_fit.sem.mlr_task()
,
vm_sev_fit.sem.mlr()
,
vm_sev_std_fit.sem.mlr_simulation_summary()
,
vm_sev_std_fit.sem.mlr_simulation()
,
vm_sev_std_fit.sem.mlr_task_summary()
,
vm_sev_std_fit.sem.mlr_task()
,
vm_sev_std_fit.sem.mlr()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | library(lavaan)
cov(jeksterslabRdatarepo::thirst)
colMeans(jeksterslabRdatarepo::thirst)
summary(fit.cov(data = jeksterslabRdatarepo::thirst))
taskid <- 1
data <- mvn_dat(taskid = taskid)
# Complete Data ----------------------------------------------------
cov(data)
colMeans(data)
summary(fit.cov(data = data))
# Missing completely at random -------------------------------------
## 10% missing
summary(fit.cov(data = mvn_mcar_10_dat(data = data, taskid = taskid)))
## 20% missing
summary(fit.cov(data = mvn_mcar_20_dat(data = data, taskid = taskid)))
## 30% missing
summary(fit.cov(data = mvn_mcar_30_dat(data = data, taskid = taskid)))
# Missing at random ------------------------------------------------
## 10% missing
summary(fit.cov(data = mvn_mar_10_dat(data = data, taskid = taskid)))
## 20% missing
summary(fit.cov(data = mvn_mar_20_dat(data = data, taskid = taskid)))
## 30% missing
summary(fit.cov(data = mvn_mar_30_dat(data = data, taskid = taskid)))
# Missing Not at random --------------------------------------------
## 10% missing
summary(fit.cov(data = mvn_mnar_10_dat(data = data, taskid = taskid)))
## 20% missing
summary(fit.cov(data = mvn_mnar_20_dat(data = data, taskid = taskid)))
## 30% missing
summary(fit.cov(data = mvn_mnar_30_dat(data = data, taskid = taskid)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.