Description Usage Arguments Details Author(s) See Also Examples
Fits the simple mediation model using Ordinary Least Squares and returns the indirect effect.
1 |
data |
|
minimal |
Logical.
If |
std |
Logical. Standardize the indirect effect \hat{α}^{\prime} \hat{β}^{\prime} = \hat{α} \hat{β} \frac{\hat{σ}_x}{\hat{σ}_y}. |
The fitted simple mediation model is given by
y_i = \hat{δ}_{y} + \hat{\dot{τ}} x_i + \hat{β} m_i + \hat{\varepsilon}_{y_{i}}
m_i = \hat{δ}_{m} + \hat{α} x_i + \hat{\varepsilon}_{m_{i}}
The estimated parameters for the mean structure are
\boldsymbol{\hat{θ}}_{\text{mean structure}} = ≤ft\{ \hat{μ}_{x}, \hat{δ}_{m}, \hat{δ}_{y} \right\} .
The estimated parameters for the covariance structure are
\boldsymbol{\hat{θ}}_{\text{covariance structure}} = ≤ft\{ \hat{\dot{τ}}, \hat{β}, \hat{α}, \hat{σ}_{x}^{2}, \hat{σ}_{\hat{\varepsilon}_{m}}^{2}, \hat{σ}_{\hat{\varepsilon}_{y}}^{2} \right\} .
Ivan Jacob Agaloos Pesigan
Other model fit functions:
beta_fit.ols_simulation_summary()
,
beta_fit.ols_simulation()
,
beta_fit.ols_task_summary()
,
beta_fit.ols_task()
,
beta_fit.ols()
,
beta_fit.sem.mlr_simulation_summary()
,
beta_fit.sem.mlr_simulation()
,
beta_fit.sem.mlr_task_summary()
,
beta_fit.sem.mlr_task()
,
beta_fit.sem.mlr()
,
beta_std_fit.sem.mlr_simulation_summary()
,
beta_std_fit.sem.mlr_simulation()
,
beta_std_fit.sem.mlr_task_summary()
,
beta_std_fit.sem.mlr_task()
,
beta_std_fit.sem.mlr()
,
exp_fit.ols_simulation_summary()
,
exp_fit.ols_simulation()
,
exp_fit.ols_task_summary()
,
exp_fit.ols_task()
,
exp_fit.ols()
,
exp_fit.sem.mlr_simulation_summary()
,
exp_fit.sem.mlr_simulation()
,
exp_fit.sem.mlr_task_summary()
,
exp_fit.sem.mlr_task()
,
exp_fit.sem.mlr()
,
exp_std_fit.sem.mlr_simulation_summary()
,
exp_std_fit.sem.mlr_simulation()
,
exp_std_fit.sem.mlr_task_summary()
,
exp_std_fit.sem.mlr_task()
,
exp_std_fit.sem.mlr()
,
fit.cov()
,
fit.sem.mlr()
,
fit.sem()
,
mvn_fit.ols_simulation_summary()
,
mvn_fit.ols_simulation()
,
mvn_fit.ols_task_summary()
,
mvn_fit.ols_task()
,
mvn_fit.ols()
,
mvn_fit.sem_simulation_summary()
,
mvn_fit.sem_simulation()
,
mvn_fit.sem_task_summary()
,
mvn_fit.sem_task()
,
mvn_fit.sem()
,
mvn_mar_10_fit.sem_simulation_summary()
,
mvn_mar_10_fit.sem_simulation()
,
mvn_mar_10_fit.sem_task_summary()
,
mvn_mar_10_fit.sem_task()
,
mvn_mar_10_fit.sem()
,
mvn_mar_20_fit.sem_simulation_summary()
,
mvn_mar_20_fit.sem_simulation()
,
mvn_mar_20_fit.sem_task_summary()
,
mvn_mar_20_fit.sem_task()
,
mvn_mar_20_fit.sem()
,
mvn_mar_30_fit.sem_simulation_summary()
,
mvn_mar_30_fit.sem_simulation()
,
mvn_mar_30_fit.sem_task_summary()
,
mvn_mar_30_fit.sem_task()
,
mvn_mar_30_fit.sem()
,
mvn_mcar_10_fit.sem_simulation_summary()
,
mvn_mcar_10_fit.sem_simulation()
,
mvn_mcar_10_fit.sem_task_summary()
,
mvn_mcar_10_fit.sem_task()
,
mvn_mcar_10_fit.sem()
,
mvn_mcar_20_fit.sem_simulation_summary()
,
mvn_mcar_20_fit.sem_simulation()
,
mvn_mcar_20_fit.sem_task_summary()
,
mvn_mcar_20_fit.sem_task()
,
mvn_mcar_20_fit.sem()
,
mvn_mcar_30_fit.sem_simulation_summary()
,
mvn_mcar_30_fit.sem_simulation()
,
mvn_mcar_30_fit.sem_task_summary()
,
mvn_mcar_30_fit.sem_task()
,
mvn_mcar_30_fit.sem()
,
mvn_mnar_10_fit.sem_simulation_summary()
,
mvn_mnar_10_fit.sem_simulation()
,
mvn_mnar_10_fit.sem_task_summary()
,
mvn_mnar_10_fit.sem_task()
,
mvn_mnar_10_fit.sem()
,
mvn_mnar_20_fit.sem_simulation_summary()
,
mvn_mnar_20_fit.sem_simulation()
,
mvn_mnar_20_fit.sem_task_summary()
,
mvn_mnar_20_fit.sem_task()
,
mvn_mnar_20_fit.sem()
,
mvn_mnar_30_fit.sem_simulation_summary()
,
mvn_mnar_30_fit.sem_simulation()
,
mvn_mnar_30_fit.sem_task_summary()
,
mvn_mnar_30_fit.sem_task()
,
mvn_mnar_30_fit.sem()
,
mvn_std_fit.sem_simulation_summary()
,
mvn_std_fit.sem_simulation()
,
mvn_std_fit.sem_task_summary()
,
mvn_std_fit.sem_task()
,
mvn_std_fit.sem()
,
vm_mod_fit.ols_simulation_summary()
,
vm_mod_fit.ols_simulation()
,
vm_mod_fit.ols_task_summary()
,
vm_mod_fit.ols_task()
,
vm_mod_fit.ols()
,
vm_mod_fit.sem.mlr_simulation_summary()
,
vm_mod_fit.sem.mlr_simulation()
,
vm_mod_fit.sem.mlr_task_summary()
,
vm_mod_fit.sem.mlr_task()
,
vm_mod_fit.sem.mlr()
,
vm_mod_std_fit.sem.mlr_simulation_summary()
,
vm_mod_std_fit.sem.mlr_simulation()
,
vm_mod_std_fit.sem.mlr_task_summary()
,
vm_mod_std_fit.sem.mlr_task()
,
vm_mod_std_fit.sem.mlr()
,
vm_sev_fit.ols_simulation_summary()
,
vm_sev_fit.ols_simulation()
,
vm_sev_fit.ols_task_summary()
,
vm_sev_fit.ols_task()
,
vm_sev_fit.ols()
,
vm_sev_fit.sem.mlr_simulation_summary()
,
vm_sev_fit.sem.mlr_simulation()
,
vm_sev_fit.sem.mlr_task_summary()
,
vm_sev_fit.sem.mlr_task()
,
vm_sev_fit.sem.mlr()
,
vm_sev_std_fit.sem.mlr_simulation_summary()
,
vm_sev_std_fit.sem.mlr_simulation()
,
vm_sev_std_fit.sem.mlr_task_summary()
,
vm_sev_std_fit.sem.mlr_task()
,
vm_sev_std_fit.sem.mlr()
1 2 3 4 5 6 7 8 9 10 | fit.ols(data = jeksterslabRdatarepo::thirst, minimal = TRUE)
fit.ols(data = jeksterslabRdatarepo::thirst, minimal = TRUE, std = TRUE)
fit.ols(data = jeksterslabRdatarepo::thirst, minimal = FALSE)
taskid <- 1
data <- mvn_dat(taskid = taskid)
fit.ols(data = data, minimal = TRUE)
fit.ols(data = data, minimal = TRUE, std = TRUE)
fit.ols(data = data, minimal = FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.