fit.sem.mlr: Fit Simple Mediation Model - Structural Equation Modeling

Description Usage Arguments Author(s) See Also Examples

View source: R/fit.sem.mlr.R

Description

Fits the simple mediation model using structural equation modeling.

Usage

1
fit.sem.mlr(data, minimal = FALSE, std = FALSE, fiml = FALSE)

Arguments

data

n by 3 matrix or data frame. data[, 1] correspond to values for x. data[, 2] correspond to values for m. data[, 3] correspond to values for y.

minimal

Logical. If TRUE, only returns the estimate of the indirect effect ≤ft( \hat{α} \hat{β} \right). If FALSE, returns more information.

std

Logical. If TRUE, estimate standardized simple mediation model using latent variables and nonlinear constraints.

fiml

Logical. If TRUE, use missing = "fiml" to handle missing values. Note that using missing = "fiml" sets fixed.x = FALSE.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other model fit functions: beta_fit.ols_simulation_summary(), beta_fit.ols_simulation(), beta_fit.ols_task_summary(), beta_fit.ols_task(), beta_fit.ols(), beta_fit.sem.mlr_simulation_summary(), beta_fit.sem.mlr_simulation(), beta_fit.sem.mlr_task_summary(), beta_fit.sem.mlr_task(), beta_fit.sem.mlr(), beta_std_fit.sem.mlr_simulation_summary(), beta_std_fit.sem.mlr_simulation(), beta_std_fit.sem.mlr_task_summary(), beta_std_fit.sem.mlr_task(), beta_std_fit.sem.mlr(), exp_fit.ols_simulation_summary(), exp_fit.ols_simulation(), exp_fit.ols_task_summary(), exp_fit.ols_task(), exp_fit.ols(), exp_fit.sem.mlr_simulation_summary(), exp_fit.sem.mlr_simulation(), exp_fit.sem.mlr_task_summary(), exp_fit.sem.mlr_task(), exp_fit.sem.mlr(), exp_std_fit.sem.mlr_simulation_summary(), exp_std_fit.sem.mlr_simulation(), exp_std_fit.sem.mlr_task_summary(), exp_std_fit.sem.mlr_task(), exp_std_fit.sem.mlr(), fit.cov(), fit.ols(), fit.sem(), mvn_fit.ols_simulation_summary(), mvn_fit.ols_simulation(), mvn_fit.ols_task_summary(), mvn_fit.ols_task(), mvn_fit.ols(), mvn_fit.sem_simulation_summary(), mvn_fit.sem_simulation(), mvn_fit.sem_task_summary(), mvn_fit.sem_task(), mvn_fit.sem(), mvn_mar_10_fit.sem_simulation_summary(), mvn_mar_10_fit.sem_simulation(), mvn_mar_10_fit.sem_task_summary(), mvn_mar_10_fit.sem_task(), mvn_mar_10_fit.sem(), mvn_mar_20_fit.sem_simulation_summary(), mvn_mar_20_fit.sem_simulation(), mvn_mar_20_fit.sem_task_summary(), mvn_mar_20_fit.sem_task(), mvn_mar_20_fit.sem(), mvn_mar_30_fit.sem_simulation_summary(), mvn_mar_30_fit.sem_simulation(), mvn_mar_30_fit.sem_task_summary(), mvn_mar_30_fit.sem_task(), mvn_mar_30_fit.sem(), mvn_mcar_10_fit.sem_simulation_summary(), mvn_mcar_10_fit.sem_simulation(), mvn_mcar_10_fit.sem_task_summary(), mvn_mcar_10_fit.sem_task(), mvn_mcar_10_fit.sem(), mvn_mcar_20_fit.sem_simulation_summary(), mvn_mcar_20_fit.sem_simulation(), mvn_mcar_20_fit.sem_task_summary(), mvn_mcar_20_fit.sem_task(), mvn_mcar_20_fit.sem(), mvn_mcar_30_fit.sem_simulation_summary(), mvn_mcar_30_fit.sem_simulation(), mvn_mcar_30_fit.sem_task_summary(), mvn_mcar_30_fit.sem_task(), mvn_mcar_30_fit.sem(), mvn_mnar_10_fit.sem_simulation_summary(), mvn_mnar_10_fit.sem_simulation(), mvn_mnar_10_fit.sem_task_summary(), mvn_mnar_10_fit.sem_task(), mvn_mnar_10_fit.sem(), mvn_mnar_20_fit.sem_simulation_summary(), mvn_mnar_20_fit.sem_simulation(), mvn_mnar_20_fit.sem_task_summary(), mvn_mnar_20_fit.sem_task(), mvn_mnar_20_fit.sem(), mvn_mnar_30_fit.sem_simulation_summary(), mvn_mnar_30_fit.sem_simulation(), mvn_mnar_30_fit.sem_task_summary(), mvn_mnar_30_fit.sem_task(), mvn_mnar_30_fit.sem(), mvn_std_fit.sem_simulation_summary(), mvn_std_fit.sem_simulation(), mvn_std_fit.sem_task_summary(), mvn_std_fit.sem_task(), mvn_std_fit.sem(), vm_mod_fit.ols_simulation_summary(), vm_mod_fit.ols_simulation(), vm_mod_fit.ols_task_summary(), vm_mod_fit.ols_task(), vm_mod_fit.ols(), vm_mod_fit.sem.mlr_simulation_summary(), vm_mod_fit.sem.mlr_simulation(), vm_mod_fit.sem.mlr_task_summary(), vm_mod_fit.sem.mlr_task(), vm_mod_fit.sem.mlr(), vm_mod_std_fit.sem.mlr_simulation_summary(), vm_mod_std_fit.sem.mlr_simulation(), vm_mod_std_fit.sem.mlr_task_summary(), vm_mod_std_fit.sem.mlr_task(), vm_mod_std_fit.sem.mlr(), vm_sev_fit.ols_simulation_summary(), vm_sev_fit.ols_simulation(), vm_sev_fit.ols_task_summary(), vm_sev_fit.ols_task(), vm_sev_fit.ols(), vm_sev_fit.sem.mlr_simulation_summary(), vm_sev_fit.sem.mlr_simulation(), vm_sev_fit.sem.mlr_task_summary(), vm_sev_fit.sem.mlr_task(), vm_sev_fit.sem.mlr(), vm_sev_std_fit.sem.mlr_simulation_summary(), vm_sev_std_fit.sem.mlr_simulation(), vm_sev_std_fit.sem.mlr_task_summary(), vm_sev_std_fit.sem.mlr_task(), vm_sev_std_fit.sem.mlr()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
library(lavaan)
summary(fit.sem.mlr(data = jeksterslabRdatarepo::thirst))
summary(fit.sem.mlr(data = jeksterslabRdatarepo::thirst, std = TRUE))
summary(fit.sem.mlr(data = jeksterslabRdatarepo::thirst, minimal = TRUE))
summary(fit.sem.mlr(data = jeksterslabRdatarepo::thirst, minimal = TRUE, std = TRUE))

taskid <- 1
data_mod <- vm_mod_dat(taskid = taskid)
data_sev <- vm_sev_dat(taskid = taskid)

# Moderate ----------------------------------------------------
summary(fit.sem.mlr(data = data_mod))

# Moderate ----------------------------------------------------
summary(fit.sem.mlr(data = data_sev))

jeksterslabds/jeksterslabRmedsimple documentation built on Oct. 16, 2020, 11:30 a.m.