mc.wishart: Monte Carlo Method for Indirect Effect in a Standardized...

Description Usage Arguments Author(s) See Also Examples

View source: R/mc.R

Description

Monte Carlo Method for Indirect Effect in a Standardized Simple Mediation Model Using the Wishart Distribution (Sampling Distribution)

Usage

1
mc.wishart(R = 20000L, Sigmahat, n, std = TRUE)

Arguments

R

Integer. Monte Carlo replications.

Sigmahat

Numeric matrix. Estimated covariance matrix.

n

Integer. Sample size.

std

Logical. Standardize the indirect effect \hat{α}^{\prime} \hat{β}^{\prime} = \hat{α} \hat{β} \frac{\hat{σ}_x}{\hat{σ}_y}.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other monte carlo method functions: beta_ols_mc.mvn_pcci_simulation(), beta_ols_mc.mvn_pcci_task(), beta_ols_mc.mvn_simulation(), beta_ols_mc.mvn_task(), beta_ols_mc.mvn(), exp_ols_mc.mvn_pcci_simulation(), exp_ols_mc.mvn_pcci_task(), exp_ols_mc.mvn_simulation(), exp_ols_mc.mvn_task(), exp_ols_mc.mvn(), mc.mvn(), mc.t(), mvn_mar_10_mc.mvn_pcci_simulation(), mvn_mar_10_mc.mvn_pcci_task(), mvn_mar_10_mc.mvn_simulation(), mvn_mar_10_mc.mvn_task(), mvn_mar_10_mc.mvn(), mvn_mar_20_mc.mvn_pcci_simulation(), mvn_mar_20_mc.mvn_pcci_task(), mvn_mar_20_mc.mvn_simulation(), mvn_mar_20_mc.mvn_task(), mvn_mar_20_mc.mvn(), mvn_mar_30_mc.mvn_pcci_simulation(), mvn_mar_30_mc.mvn_pcci_task(), mvn_mar_30_mc.mvn_simulation(), mvn_mar_30_mc.mvn_task(), mvn_mar_30_mc.mvn(), mvn_mcar_10_mc.mvn_pcci_simulation(), mvn_mcar_10_mc.mvn_pcci_task(), mvn_mcar_10_mc.mvn_simulation(), mvn_mcar_10_mc.mvn_task(), mvn_mcar_10_mc.mvn(), mvn_mcar_20_mc.mvn_pcci_simulation(), mvn_mcar_20_mc.mvn_pcci_task(), mvn_mcar_20_mc.mvn_simulation(), mvn_mcar_20_mc.mvn_task(), mvn_mcar_20_mc.mvn(), mvn_mcar_30_mc.mvn_pcci_simulation(), mvn_mcar_30_mc.mvn_pcci_task(), mvn_mcar_30_mc.mvn_simulation(), mvn_mcar_30_mc.mvn_task(), mvn_mcar_30_mc.mvn(), mvn_mnar_10_mc.mvn_pcci_simulation(), mvn_mnar_10_mc.mvn_pcci_task(), mvn_mnar_10_mc.mvn_simulation(), mvn_mnar_10_mc.mvn_task(), mvn_mnar_10_mc.mvn(), mvn_mnar_20_mc.mvn_pcci_simulation(), mvn_mnar_20_mc.mvn_pcci_task(), mvn_mnar_20_mc.mvn_simulation(), mvn_mnar_20_mc.mvn_task(), mvn_mnar_20_mc.mvn(), mvn_mnar_30_mc.mvn_pcci_simulation(), mvn_mnar_30_mc.mvn_pcci_task(), mvn_mnar_30_mc.mvn_simulation(), mvn_mnar_30_mc.mvn_task(), mvn_mnar_30_mc.mvn(), mvn_ols_mc.mvn_pcci_simulation(), mvn_ols_mc.mvn_pcci_task(), mvn_ols_mc.mvn_simulation(), mvn_ols_mc.mvn_task(), mvn_ols_mc.mvn(), mvn_sem_mc.mvn_pcci_simulation(), mvn_sem_mc.mvn_pcci_task(), mvn_sem_mc.mvn_simulation(), mvn_sem_mc.mvn_task(), mvn_sem_mc.mvn(), mvn_std_mc.mvn.delta_pcci_simulation(), mvn_std_mc.mvn.delta_pcci_task(), mvn_std_mc.mvn.delta_simulation(), mvn_std_mc.mvn.delta_task(), mvn_std_mc.mvn.delta(), mvn_std_mc.mvn.sem_pcci_simulation(), mvn_std_mc.mvn.sem_pcci_task(), mvn_std_mc.mvn.sem_simulation(), mvn_std_mc.mvn.sem_task(), mvn_std_mc.mvn.sem(), mvn_std_mc.mvn.tb_pcci_simulation(), mvn_std_mc.mvn.tb_pcci_task(), mvn_std_mc.mvn.tb_simulation(), mvn_std_mc.mvn.tb_task(), mvn_std_mc.mvn.tb(), mvn_std_mc.wishart_pcci_simulation(), mvn_std_mc.wishart_pcci_task(), mvn_std_mc.wishart_simulation(), mvn_std_mc.wishart_task(), mvn_std_mc.wishart(), vm_mod_ols_mc.mvn_pcci_simulation(), vm_mod_ols_mc.mvn_pcci_task(), vm_mod_ols_mc.mvn_simulation(), vm_mod_ols_mc.mvn_task(), vm_mod_ols_mc.mvn(), vm_mod_sem_mc.mvn_pcci_simulation(), vm_mod_sem_mc.mvn_pcci_task(), vm_mod_sem_mc.mvn_simulation(), vm_mod_sem_mc.mvn_task(), vm_mod_sem_mc.mvn(), vm_sev_ols_mc.mvn_pcci_simulation(), vm_sev_ols_mc.mvn_pcci_task(), vm_sev_ols_mc.mvn_simulation(), vm_sev_ols_mc.mvn_task(), vm_sev_ols_mc.mvn(), vm_sev_sem_mc.mvn_pcci_simulation(), vm_sev_sem_mc.mvn_pcci_task(), vm_sev_sem_mc.mvn_simulation(), vm_sev_sem_mc.mvn_task(), vm_sev_sem_mc.mvn()

Examples

1
2
3
4
5
6
Sigmahat <- cov(jeksterslabRdatarepo::thirst)
n <- dim(jeksterslabRdatarepo::thirst)[1]
thetahatstar <- mc.wishart(
  R = 20000L, Sigmahat = Sigmahat, n = n
)
hist(thetahatstar)

jeksterslabds/jeksterslabRmedsimple documentation built on Oct. 16, 2020, 11:30 a.m.