Description Usage Format Details See Also Examples
Monte Carlo Simulation Parameters (Beta X)
1  | 
A data frame with 12 variables
Simulation task identification number.
Shape 1. Beta distribution parameter α.
Shape 2. Beta distribution parameter β.
Sample size.
Population mean of x ≤ft( μ_x \right).
Population mean of m ≤ft( μ_m \right).
Population mean of y ≤ft( μ_y \right).
Population slope of path from x to y ≤ft( \dot{τ} \right)
Population slope of path from m to y ≤ft( β \right)
Population slope of path from x to m ≤ft( α \right)
Population variance of x ≤ft( σ_{x}^{2} \right)
Population variance of m ≤ft( σ_{m}^{2} \right)
Population variance of y ≤ft( σ_{y}^{2} \right)
Monte Carlo replications.
The simple mediation model is given by
y_i = δ_y + \dot{τ} x_i + β m_i + \varepsilon_{y_{i}}
m_i = δ_m + α x_i + \varepsilon_{m_{i}}
The parameters for the mean structure are
\boldsymbol{θ}_{\text{mean structure}} = ≤ft\{ μ_x, δ_m, δ_y \right\} .
The parameters for the covariance structure are
\boldsymbol{θ}_{\text{covariance structure}} = ≤ft\{ \dot{τ}, β, α, σ_{x}^{2}, σ_{\varepsilon_{m}}^{2}, σ_{\varepsilon_{y}}^{2} \right\} .
Other parameters functions: 
paramsexp,
paramsmvn
1 2 3  | data(paramsbeta, package = "jeksterslabRmedsimple")
head(paramsbeta)
str(paramsbeta)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.