Description Usage Arguments Details Author(s) See Also
Calculates confidence interval shape.
1 | shape(lo, thetahat, up)
|
lo |
Numeric. Lower limit of the estimated confidence interval ≤ft( \hat{θ}_{\mathrm{lo}} \right). |
thetahat |
Numeric. Parameter estimate ≤ft( \hat{ θ } \right) . |
up |
Numeric. Upper limit of the estimated confidence interval ≤ft( \hat{θ}_{\mathrm{up}} \right). |
The confidence interval shape is given by
\mathrm{ confidence \ interval \ shape } = \frac{ \hat{ θ }_{ \mathrm{ up } } - \hat{ θ } } { \hat{ θ } - \hat{ θ }_{ \mathrm{ lo } } }
The shape measures the asymmetry of the confidence interval around the point estimate \hat{ θ } . Shape > 1.00 is indicative of greater distance between \hat{ θ }_{ \mathrm{ up } } and \hat{ θ } than \hat{ θ } and \hat{ θ }_{ \mathrm{ lo } } .
Ivan Jacob Agaloos Pesigan
Other confidence intervals functions:
bcaci()
,
bcci()
,
evalci()
,
len()
,
pcci()
,
theta_hit()
,
zero_hit()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.