shape: Confidence Interval - Shape

Description Usage Arguments Details Author(s) See Also

View source: R/eval.R

Description

Calculates confidence interval shape.

Usage

1
shape(lo, thetahat, up)

Arguments

lo

Numeric. Lower limit of the estimated confidence interval ≤ft( \hat{θ}_{\mathrm{lo}} \right).

thetahat

Numeric. Parameter estimate ≤ft( \hat{ θ } \right) .

up

Numeric. Upper limit of the estimated confidence interval ≤ft( \hat{θ}_{\mathrm{up}} \right).

Details

The confidence interval shape is given by

\mathrm{ confidence \ interval \ shape } = \frac{ \hat{ θ }_{ \mathrm{ up } } - \hat{ θ } } { \hat{ θ } - \hat{ θ }_{ \mathrm{ lo } } }

The shape measures the asymmetry of the confidence interval around the point estimate \hat{ θ } . Shape > 1.00 is indicative of greater distance between \hat{ θ }_{ \mathrm{ up } } and \hat{ θ } than \hat{ θ } and \hat{ θ }_{ \mathrm{ lo } } .

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other confidence intervals functions: bcaci(), bcci(), evalci(), len(), pcci(), theta_hit(), zero_hit()


jeksterslabds/jeksterslabRmedsimple documentation built on Oct. 16, 2020, 11:30 a.m.