knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
\begin{equation} \mathbf{\Sigma} = \mathbf{\Sigma} \left( \mathbf{\theta} \right) \end{equation}
where
\begin{equation} y = \gamma x + \zeta \end{equation}
where
$\zeta$ (zeta) is the disturbance variable
uncorrelated with $x$, and
\begin{equation} \begin{split} \mathbf{\Sigma} &= \mathbf{\Sigma} \left( \mathbf{\theta} \right) \ \begin{bmatrix} \mathrm{Var} \left( y \right) & \ \mathrm{Cov} \left( x, y \right) & \mathrm{Var} \left( x \right) \end{bmatrix} &= \begin{bmatrix} \gamma^2 \sigma_{x}^{2} + \sigma_{\zeta}^{2} & \ \gamma \sigma_{x}^{2} & \sigma_{x}^{2} \end{bmatrix} \end{split} \end{equation}
\begin{equation} \begin{split} x_1 &= \xi + \delta_1 \ x_2 &= \xi + \delta_2 \end{split} \end{equation}
where
$\delta_1$ and $\delta_2$ are random disturbance terms
uncorrelated with $\xi$ and with each other, and
$\mathbb{E} \left( \delta_1 \right) = \mathbb{E} \left( \delta_2 \right) = 0$
the latent variable $\xi$ has a variance $\phi$ (phi)
\begin{equation} \begin{split} \mathbf{\Sigma} &= \mathbf{\Sigma} \left( \mathbf{\theta} \right) \ \begin{bmatrix} \mathrm{Var} \left( x_1 \right) & \ \mathrm{Cov} \left( x_1, x_2 \right) & \mathrm{Var} \left( x_2 \right) \end{bmatrix} &= \begin{bmatrix} \phi + \sigma^{2}{\delta_1} & \ \phi & \phi + \sigma^{2}{\delta_2} \end{bmatrix} \end{split} \end{equation}
\begin{equation} \begin{split} y &= \gamma \xi + \zeta \ x_1 &= \xi + \delta_1 \ x_2 &= \xi + \delta_2 \end{split} \end{equation}
where
the factor model is identical to the previous model
$\zeta$, $\delta_1$, and $\delta_2$ are uncorrelted with $\xi$ and with each other
\begin{equation}
\begin{split}
\mathbf{\Sigma}
&=
\mathbf{\Sigma} \left( \mathbf{\theta} \right) \
\begin{bmatrix}
\mathrm{Var} \left( y \right) & & \
\mathrm{Cov} \left( x_1, y \right) & \mathrm{Var} \left( x_1 \right) & \
\mathrm{Cov} \left( x_2, y \right) & \mathrm{Cov} \left( x_2, x_1 \right) & \mathrm{Var} \left( x_2 \right)
\end{bmatrix}
&=
\begin{bmatrix}
\gamma^2 \phi + \sigma^{2}{\zeta} & & \
\gamma \phi & \phi + \sigma^{2}{\delta_1} & \
\gamma \phi & \phi & \phi + \sigma^{2}_{\delta_2}
\end{bmatrix}
\end{split}
\end{equation}
Wright (1918, 1921, 1934, 1960)
the path diagram,
the decomposition of effects (total effects, direct effects, and indirect effects)
Wright's development of equations for covariances of variables in terms of model parameters is the same as that of $\mathbf{\Sigma} = \mathbf{\Sigma} \left( \mathbf{\theta} \right)$, except that he developed these equations from path diagrams rather than the matrix methods employed today.
The conceptual synthesis of models containing structurally related latent variables and more elaborate measurement models was developed extensively in sociology during the 1960s and early 1970s.
Blalock (1963) argued that sociologists should use causal models containing both indicators and underlying variables to make inferences about the latent variables based on the covariances of the observed indicators.
Joreskog (1973), Keesing (1972), and Wiley (1973) developed very general structural equation models, incorporated path diagrams and other features of path analysis into their presentations. Researchers know these techniques by the abbreviation of the JKW model (Bentler 1980), or more commonly as the LISREL model.
Its present form has some elaboration in the symbols employed in path diagrams,
Joreskog and Goldberger (1972) and Browne (1974, 1982, 1984) suggested generalized least squares (GLS) estimators that offer additional flexibility in the assumptions under which they apply.
Browne (1982, 1984), for example, proposed estimators that assume arbitrary distributions or elliptical distributions for the observed variables.
Bentler (1983) suggested estimators that treat higher-order product moments of the observed variables. He demonstrated that these moments can help identify model parameters that are not identified by the covariances and the gains in efficiency that may result.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.