Description Usage Arguments Details Value Author(s) References See Also
Derives the \mathbf{S} matrix using the Reticular Action Model (RAM) notation from variable variances σ^2. The off-diagonal elements of the \mathbf{S} matrix are assumed to be zeroes.
1 |
sigma2 |
Numeric vector. Vector of variances σ^2. |
A |
|
start |
Logical.
If |
The \mathbf{S} matrix is derived using the \mathbf{A} matrix
and sigma squared ≤ft( σ^2 \right) vector (variances).
Note that the first or last (see start
argument) element
in the A
and S
matrices should be an exogenous variable.
Returns the \mathbf{S} matrix.
Ivan Jacob Agaloos Pesigan
McArdle, J. J. (2013). The development of the RAM rules for latent variable structural equation modeling. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary Psychometrics: A festschrift for Roderick P. McDonald (pp. 225–273). Lawrence Erlbaum Associates.
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37 (2), 234–251.
Other SEM notation functions:
ramM()
,
ramSigmatheta()
,
rammutheta()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.