View source: R/item.params.convert.R
item.params.convert | R Documentation |
Convert item parameters from one parametrization to another
item.params.convert(
from.model = NULL,
item.params = c(),
from = c("pcm", "pcm.cent", "andersen", "psd", "conquest"),
to = c("pcm", "pcm.cent", "andersen", "psd", "conquest"),
return.vector = F
)
from.model |
A model of class TAM or eRm. |
item.params |
A matrix of item parameters (items in rows, thresholds in columns) (not needed if from.model is given) |
from, to |
Type of item parameters. One of pcm, pcm.cent, andersen, psd, conquest (from not needed if from.model is given). |
return.vector |
Get result as a vector of category values instead of the default data.frame |
The Rasch model can be parameterized in multiple ways. This function translates parameters from one to the other. The following models are supported:
Power series distribution parametrization (psd)
\xi^x\gamma_x \over G(\xi,\gamma_1 ... \gamma_k)
, where \xi
is the person parameter (ability), and \gamma_x
are the item parameters. Related through \xi=exp(\theta)
and \gamma_x=exp(\delta_x)
to the Andersen parametrization
Andersen parametrization (andersen)
exp(x\theta+\delta_x) \over G(\theta,\delta_1 ... \delta_k)
, where \theta
is the person parameter (ability), and \delta_x
are the item (easiness) parameters
Partial Credit Model (PCM)/Masters' parametrization (pcm)
exp(x\theta-\sum\limits_{i=1}^x\tau_i) \over G(\theta,\tau_1 ... \tau_k)
, where \theta
is the person parameter (ability), and \tau_x
are the item step parameters
Partial Credit Model (PCM)/Masters' parametrization with centralized item step parameters (pcm.cent)
exp(x(\theta-\beta)-\sum\limits_{i=1}^x\beta_i) \over G(\theta,\beta_1 ... \beta_k)
, where \theta
is the person parameter (ability), \beta={1 \over k}\sum\limits_{i=1}^k \tau_i
is the average of the \tau
parameters from the PCM parametrization, and \beta_x=\tau_x-{1 \over k}\sum\limits_{i=1}^k \tau_i
are the centralized item step parameters
Conquest parametrization (conquest)
exp(x(\theta-\psi-\sum\limits_{i=1}^x \psi_x) \over G(\theta,\psi_1 ... \psi_k)
, where \sum\limits_{i=1}^x \psi_i \equiv 0
. And where \theta
is the person parameter (ability), \psi={1 \over k}\sum\limits_{i=1}^k \tau_i
is the average of the \tau
parameters from the PCM parametrization, and \psi_x=\tau_x-{1 \over k}\sum\limits_{i=1}^k \tau_i
are the centralized item step parameters
TAM uses Conquest parametrization. eRm uses Andersen parametrization. RUMM 2030 uses Partial Credit parametrization with centralized item step parameters. DIGRAM uses Power Series Distribution parametrization.
Returns item parameters in the parametrization specified in to.
Jeppe Bundsgaard & Svend Kreiner
Andersen, B. E. (1970). Asymptotic properties of conditional likelihood estimators. Journal of the Royal Statistical Society, Series B, 32,283-301.
Brown, N. J. S. (2004). Interpreting Ordered Partition Model Parameters from ConQuest. https://bearcenter.berkeley.edu/sites/default/files/report%20-%20opm_parameters.pdf
Hatzinger, R., & Rusch, T. (2009). IRT models with relaxed assumptions in eRm: A manual-like instruction. Psychology Science Quarterly, 51(1), 87–120.
Kreiner, S. (n.d.). Om beregning af item-parametre I TAM.
Kreiner, s. (n.d.). Parameterization of graphical loglinear Rasch models.
Bundsgaard, J. & Kreiner, S. (2019). Undersøgelse af De Nationale Tests måleegenskaber. 2nd Ed. Copenhagen: DPU, Aarhus University.
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.
item.params<-matrix(c(0,1,2,3,1,2,3,4),nrow=4)
item.params.convert(item.params=item.params,from="conquest",to="psd")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.