decomp_cov | R Documentation |
decomp_cov
decomposes a covariance matrix
v
. If A = decomp_cov(v)
, then
tcrossprod(A, A) == v
.
decomp_cov(v, method = "eigen")
decomp.cov(v, method = "eigen")
v |
An |
method |
The method used to decompose |
The "chol"
method is the fastest but least
stable method. The "eigen"
method is slower, but more
stable. The "svd"
method is the slowest method,
but should be the most stable.
Returns an N \times N
matrix.
Joshua French
# generate data
n = 100
coords = matrix(runif(n*2), nrow = n, ncol = 2)
d = as.matrix(dist(coords))
# create covariance matrix
v = 3 * exp(-d/2) + 0.1 * diag(n)
# decompose v using the three methods
d1 = decomp_cov(v, "chol")
d2 = decomp_cov(v, "eigen")
d3 = decomp_cov(v, "svd")
# verify accuracy of decompositions
all.equal(v, tcrossprod(d1))
all.equal(v, tcrossprod(d2), check.attributes = FALSE)
all.equal(v, tcrossprod(d3), check.attributes = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.