knitr::opts_chunk$set(echo = TRUE)
#ROSMAP samples_inline <- glue::glue_collapse(removed_samples, sep = ", ", last = " and ")
Samples r samples_inline
were removed from the analysis due to missing metadata.
draw(covar_correlation$plot, heatmap_legend_side = 'left', padding = unit(c(18,2,2,18), 'mm'))
# RIN p = list() p[[1]] = ggplot(clean_md, aes(x = diagnosis, y = RINcontinuous)) + geom_boxplot() p[[1]] = p[[1]] + ggtitle('RIN') + theme(legend.position = 'top') # AgeAtDeath p[[2]] = ggplot(clean_md, aes(x = diagnosis, y = age_death)) + geom_boxplot() p[[2]] = p[[2]] + ggtitle('AgeOfDeath') + theme(legend.position = 'top') # PMI p[[3]] = ggplot(clean_md, aes(x = diagnosis, y = pmi)) + geom_boxplot() p[[3]] = p[[3]] + ggtitle('PMI') + theme(legend.position = 'top') # Education p[[4]] = ggplot(clean_md, aes(x = diagnosis, y = educ)) + geom_boxplot() p[[4]] = p[[4]] + ggtitle('Education') + theme(legend.position = 'top') # Intronic bases p[[5]] = ggplot(clean_md, aes(x = diagnosis, y = PCT_INTRONIC_BASES)) + geom_boxplot() p[[5]] = p[[5]] + ggtitle('Fraction Intronic Bases') + theme(legend.position = 'top') # Ribosomal bases p[[6]] = ggplot(clean_md, aes(x = diagnosis, y = PCT_RIBOSOMAL_BASES)) + geom_boxplot() p[[6]] = p[[6]] + ggtitle('Fraction Ribosomal Bases') + theme(legend.position = 'top') multiplot(plotlist = p, cols = 2)
null_model_covars[["PEC_res"]][[2]]$plotData
# Identify outliers - samples 4SDs from the mean outliers <- as.character(plotdata$SampleID[c(which(plotdata$PC1 < mean(plotdata$PC1) - 4*sd(plotdata$PC1)), which(plotdata$PC1 > mean(plotdata$PC1) + 4*sd(plotdata$PC1))), drop = T]) outliers <- c(outliers, as.character(plotdata$SampleID[c(which(plotdata$PC2 < mean(plotdata$PC2) - 4*sd(plotdata$PC2)), which(plotdata$PC2 > mean(plotdata$PC2) + 4*sd(plotdata$PC2))), drop = T] )) plotdata <- left_join(plotdata, rownameToFirstColumn(COVARIATES, "SampleID")) %>% tidyr::separate(Dx.Tissue, c('Dx','Tissue'), sep = '_') %>% dplyr::mutate(label = SampleID) %>% dplyr::mutate(label = ifelse((label %in% outliers), label, NA)) p <- ggplot(plotdata, aes(x=PC1, y=PC2)) p <- p + geom_point(aes(color=Institution, shape=Tissue, size=ageOfDeath)) p <- p + theme_bw() + theme(legend.position="right") + facet_grid(Tissue~.) p <- p + geom_text(aes(label= label), size=4, hjust=0) p
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.