# #code Figure 5F PvdA/NRPS
# # Jug
# # mis au propore le "Mon Oct 01 17:27:50 2018"
#
#
# # from http://biostatmatt.com/archives/2745
#
# # radially symmetric kernel (Gussian kernel)
# RadSym <- function(u)
# exp(-rowSums(u^2)/2) / (2*pi)^(ncol(u)/2)
#
# ## multivariate extension of Scott's bandwidth rule
# Scott <- function(data)
# t(chol(cov(data))) * nrow(data) ^ (-1/(ncol(data)+4))
#
# ## compute KDE at x given data
# mvkde <- function(x, data, bandwidth=Scott, kernel=RadSym) {
# # bandwidth may be a function or matrix
# if(is.function(bandwidth))
# bandwidth <- bandwidth(data)
# u <- t(solve(bandwidth, t(data) - x))
# mean(kernel(u))
# }
#
# ## compute KDE at (matrix) x given data
# smvkde <- function(x, ...)
# apply(x, 1, mvkde, ...)
#
#
# getallPath <- function(folder){
# flist <- list.files(folder)
# pathEGFPList <- flist[grep(flist, pattern=".img")]
# pathEGFPList <- gsub(pathEGFPList,pattern=".img",replacement="")
# return(pathEGFPList)
# }
#
#
#
#
# ###
# getDataD <- function(pathEGFP,label){
# alpha1d <- read.table(paste(pathEGFP,"_a1[%].asc",sep=''),h=FALSE)
# alpha1d <- as.vector(as.matrix(alpha1d))
# alpha2d <- read.table(paste(pathEGFP,"_a2[%].asc",sep=''),h=FALSE)
# alpha2d <- as.vector(as.matrix(alpha2d))
# tau1d <- read.table(paste(pathEGFP,"_t1.asc",sep=''),h=FALSE)
# tau1d <- as.vector(as.matrix(tau1d))
#
# dataD <- data.frame(tau1d,alpha1d,alpha2d)
# dataD <- dataD[ tau1d!=0,]
# dataD$tauMean <- ifelse(dataD$tau1d==20, 2300, dataD$tau1d * dataD$alpha1d/100 + 2300 * dataD$alpha2d/100)
# dataD$alpha <- dataD$alpha1d
# dataD$alpha[dataD$alpha1d<5] <- rnorm(sum(dataD$alpha1d<5),0,3)
# dataD$tau <- dataD$tau1d
# dataD$tau[dataD$alpha1d<5] <- rnorm(sum(dataD$alpha1d<5),2300, 20)
# dataD$tau <- dataD$tau/1000
# dataD$ind <- label
#
# return(dataD)
# }
#
#
# getDataF <- function(pathFRET,label){
# alpha1f <- read.table(paste(pathFRET,"_a1[%].asc",sep=''),h=FALSE)
# alpha1f <- as.vector(as.matrix(alpha1f))
# alpha2f <- read.table(paste(pathFRET,"_a2[%].asc",sep=''),h=FALSE)
# alpha2f <- as.vector(as.matrix(alpha2f))
# tau1f <- read.table(paste(pathFRET,"_t1.asc",sep=''),h=FALSE)
# tau1f <- as.vector(as.matrix(tau1f))
#
# dataF <- data.frame(tau1f,alpha1f,alpha2f)
# dataF <- dataF[ tau1f!=0,]
# dataF$tauMean <- ifelse(dataF$tau1f==20, 2300, dataF$tau1f * dataF$alpha1f/100 + 2300 * dataF$alpha2f/100)
# dataF$alpha <- dataF$alpha1f
# dataF$alpha[dataF$alpha1f<5] <- rnorm(sum(dataF$alpha1f<5),0,3)
# dataF$tau <- dataF$tau1f
# dataF$tau[dataF$alpha1f<5] <- rnorm(sum(dataF$alpha1f<5),2300, 20 )
# dataF$tau <- dataF$tau/1000
# dataF$ind <- label
# return(dataF)
# }
#
# #406 vs 407
#
# qsD <- numeric()
# qsF <- numeric()
# j <- k <- 0
# for (i in 2:5){
# j = j+1
# aa <- getDataD(paste("C:/FlimAllRaw/406/20170302_00",i,sep=""),label=j)
# bb <- getDataF(paste("C:/FlimAllRaw/407/20170302_00",i,sep=""),label=j)
# qsD <- rbind(qsD,aa)
# qsF <- rbind(qsF,bb)
# }
# for (i in 1:5){
# j = j+1
# aa <- getDataD(paste("C:/FlimAllRaw/406/20170316_00",i,sep=""),label=j)
# bb <- getDataF(paste("C:/FlimAllRaw/407/20170316_00",i,sep=""),label=j)
# qsD <- rbind(qsD,aa)
# qsF <- rbind(qsF,bb)
# }
# for (i in 1:6){
# j = j+1
# aa <- getDataD(paste("C:/FlimAllRaw/406/20170324_00",i,sep=""),label=j)
# bb <- getDataF(paste("C:/FlimAllRaw/407/20170324_00",i,sep=""),label=j)
# qsD <- rbind(qsD,aa)
# qsF <- rbind(qsF,bb)
# }
#
# #for (i in 2:6){
# # j = j+1
# # aa <- getDataD(paste("C:/FlimAllRaw/406/20170421_00",i,sep=""),label=j)
# # bb <- getDataF(paste("C:/FlimAllRaw/407/20170421_00",i,sep=""),label=j)
# # qsD <- rbind(qsD,aa)
# # qsF <- rbind(qsF,bb)
# #}
#
#
# dim(qsD)
# dim(qsF)
# par(mfrow=c(2,1))
# boxplot(tau~ind, data=qsD, ylim=c(2,2.5)) ; abline(h=2.3) ; abline(h=2.2)
# boxplot(tau~ind, data=qsF, ylim=c(2,2.5)); abline(h=2.3) ; abline(h=2.2)
#
# #tau1 <- read.table("F:/Morgane/FlimAllRaw/407/20170316_001_t1.asc",h=FALSE)
#
# x11()
#
#
# #qsD <- qsD[qsD$alpha > 1 & qsD$alpha < 99 & qsD$tau >0.5 ,]
# #qsF <- qsF[qsF$alpha > 1 & qsF$alpha < 99 & qsF$tau >0.5 ,]
#
# qsDup <- qsD[qsD$alpha > 1 & qsD$alpha < 99 & qsD$tau1d != 20.00 ,]
# qsFup <- qsF[qsF$alpha > 1 & qsF$alpha < 99 & qsF$tau1f != 20.00 ,]
#
#
# ## compute density on a grid of Ozone and Solar.R values
# dens.alpha <- seq(-5,100,length.out=105)
# dens.tau1 <- seq(0.5,2.4,length.out=100)
# dens.grid <- expand.grid( alpha=dens.alpha, tau=dens.tau1)
# dens.vals <- smvkde(dens.grid, data=qsDup[,c("alpha","tau")])
# dens.vals2 <- smvkde(dens.grid, data=qsFup[,c("alpha","tau")])
#
# ## arrange density values into matrix for easy plotting
# dens.mtrx <- matrix(dens.vals, 105, 100)
# dens.mtrx2 <- matrix(dens.vals2, 105, 100)
#
# setwd("E:/Seafile/Ma biblioth?que/Papiers/FlimNRPS/draftFigures/draftFigure5")
# getwd()
# pdf("PvdL406407.pdf")
# par(mar=c(6,6,4,4))
# contour(x=dens.alpha, y=dens.tau1,nlevels=3, z=dens.mtrx, axes=T, las=1, cex.lab=2, col=rgb(66/255,69/255,244/255,1:10/10),drawlabels = FALSE,
# xlab=expression(paste(alpha [1]," %")), ylab=expression(tau [1]),lwd=2, ylim=c(1,2.4), xlim=c(-5,120))
#
# for (i in c(seq(1.700, 2.400, by=.1), 2.250, 2.350)){
# alphax <- 0:100
# tauMean = i
# tau1y <- 2.300 - (2.300 - tauMean) / (alphax/100)
# lines(alphax, tau1y, lty=2, col='blue')
# alphax = 105
# tau1y <- 2.300 - (2.300 - tauMean) / (alphax/100)
# text(x = alphax, y = tau1y, paste(tauMean, "ns", sep=" "), col="blue", cex= .65,adj = 0)
# }
#
# with(qsDup[sample(size =2000,1:dim(qsD)[1],replace=T),],points(alpha, tau, pch=20, cex=.25,col=rgb(66/255,69/255,244/255,.3)))
# with(qsFup[sample(size =2000,1:dim(qsD)[1],replace=T),],points(alpha, tau, pch=20, cex=.25,col=rgb(255/255,165/255,0/255,1)))
# #points(qsF$alpha, qsF$tau, pch=20, cex=.25, col=rgb(1,0,0,.2))
# contour(x=dens.alpha, y=dens.tau1, z=dens.mtrx, nlevels=4, col=rgb(66/255,69/255,244/255,1:10/10),drawlabels = FALSE,add=T, lwd=2)
# contour(x=dens.alpha, y=dens.tau1, z=dens.mtrx2, nlevels=5, add=TRUE, drawlabels = FALSE,col=rgb(255/255,165/255,0/255,seq(.5,1,by=.15)),lwd=2)
# dev.off()
#
# ####################
# # inset boxplot
# unDeuxDonly <- as.factor(qsD$tau1d==20.00 | qsD$tau1d >= 2050)
# aggregate(unDeuxDonly ~as.factor(qsD$ind), FUN=table)
# aggregate(unDeuxDonly ~as.factor(qsD$ind), FUN=length)
# pctDo <- aggregate(unDeuxDonly ~as.factor(qsD$ind), FUN=table)[,2][,2]/aggregate(unDeuxDonly ~qsD$ind, FUN=length)[,2]
#
# unDeuxDA <- qsF$tau1f==20.00 | qsF$tau1f >= 2200
# aggregate(unDeuxDA ~as.factor(qsF$ind), FUN=table)
# aggregate(unDeuxDA ~as.factor(qsF$ind), FUN=length)
# pctDA <- aggregate(unDeuxDA ~as.factor(qsF$ind), FUN=table)[,2][,2]/aggregate(unDeuxDA ~qsF$ind, FUN=length)[,2]
#
# fr <- data.frame(fraction = c(pctDo,pctDA), condition = c(rep("D",15), rep("D-A",15)))
# fr$condition <- relevel(fr$condition, ref="D")
# par(mar=c(10,10,6,6))
# boxplot(fraction~condition,data=fr,notch = F,ylim=c(0,1),
# col=c(rgb(66/255,69/255,244/255),rgb(255/255,165/255,0)),
# las=1,cex.lab=2,cex.axis=2, ylab="")
#
#
#
#
#
# ####################
# # marginal dist
# df <- data.frame(valtau1 =c(qsD$tau1d[qsD$tau1d!=20.00],qsF$tau1f[qsF$tau1f!=20.00]),
# condition= c(rep("D-only",length(qsD$tau1d[qsD$tau1d!=20.00])),
# rep("D-A",length(qsF$tau1f[qsF$tau1f!=20.00]))))
#
# hd <- hist(df$valtau1[df$condition=="D-only"],breaks = seq(0,2300,by=50),
# col=rgb(.153,.392,.482,.5), probability=T,
# xlim=c(1200, 2300))
# hda <- hist(df$valtau1[df$condition=="D-A"],breaks = seq(0,2300,by=50),add=T,
# probability=T,
# col=rgb(1,0,0,.5)
# )
#
# barplot(hda$counts[20:46],horiz=T, axes=F, col=rgb(255/255,165/255,0,.5),xlim=c(0,20000),space=0)
# barplot(hd$counts[20:46],horiz=T, axes=F,add=T,col=rgb(66/255,69/255,244/255,.5),space=0)
# box()
#
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.