Description Usage Arguments Details Value Examples
estimateHMM performs EM Algorithm on multiple trajectures of observed chain X
1  | estimateHMM(X, M, constr = matrix(1, M, M), tol = 0.001)
 | 
X | 
 a vector of observed states  | 
M | 
 the number of states of Markov chain  | 
constr | 
 a constrain matrix for transition probability: 
  | 
tol=0.001 | 
 error tolerance.  | 
Assumes hidden Markov model, the emmision probability follows normal distribution.
Detail model parameters are given by the function generateHMM.
Estimation would terminate in a given error tolerance.
A list containing:
 mean vector, u
 standard deviation vector, sig
 transition matrix, trans
 number of iterations used, iter
Print the class: EstConverge
1 2 3 4 5 6  | set.seed(1221)
df <- generateHMM(num=6,n=100)
estimateHMM(df$X, M=3, constr=matrix(1,3,3), tol=0.001)
constr2 <- matrix(1,3,3)
constr2[1,1] <- 0; constr2[3,3] <- 0;
estimateHMM(df$X, M=3, constr=constr2, tol=0.001)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.