R package to standardise statistical analyses of time series in the CoClime project.
The package is not on CRAN. Install it with
# if needed
install.packages("remotes")
# then
remotes::install_github("jiho/coclimer")
Load the package
library("coclimer")
A test dataset is included in the package, containing the concentration of Ostreopsis ovata in two forms and environemental variables. Read more about it with
?ost
Make it available and inspect it with
data(ost)
head(ost)
## # A tibble: 6 x 13
## date benthic planktonic chla no2 no3 oxygen po4 poc pon
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2007-01-01 0 0 0.416 0.077 0.438 5.64 0.08 78.1 7.9
## 2 2007-01-08 0 0 0.416 0.077 0.438 5.64 0.08 78.1 7.9
## 3 2007-01-15 0 0 0.367 0.129 0.378 5.62 0.0873 60.0 5.84
## 4 2007-01-22 0 0 0.309 0.189 0.309 5.65 0.0958 38.8 3.44
## 5 2007-01-29 0 0 0.351 0.209 0.462 5.73 0.243 41.2 6.19
## 6 2007-02-05 0 0 0.398 0.336 0.654 5.80 0.145 60.9 3.87
## # … with 3 more variables: salinity <dbl>, sioh4 <dbl>, temperature <dbl>
Your data should be made to look the same: a date
column, columns for
species concentrations/abundances, columns for environmental variables.
Functions plot_multi()
and plot_seasonnal()
allow to represent the
data of multiple series graphically
# full time series
plot_multi(ost, benthic:planktonic)
plot_multi(ost, benthic:planktonic, trans="sqrt")
# seasonal view
plot_seasonal(ost, benthic:planktonic, trans="sqrt")
The function yearly_stats()
allows to compute standardised statistics
for each year.
# for benthic concentration
yearly_stats(ost$date, ost$benthic, bloom_threshold=200000)
## # A tibble: 11 x 7
## year max_conc integr_conc day_max_conc day_start_bloom day_end_bloom
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2007 1565514. 12076718. 183 177 189
## 2 2008 359865. 7606196. 197 191 204
## 3 2009 481637. 5229863. 180 176 185
## 4 2010 443729. 6993577. 193 190 205
## 5 2011 755554. 20583752. 207 189 222
## 6 2012 293989. 7575923. 191 188 235
## 7 2013 871727. 14008834. 203 197 235
## 8 2014 878630. 10595108. 196 185 200
## 9 2015 212300. 4037950. 180 180 180
## 10 2016 288864. 7033000. 214 212 222
## 11 2017 469755. 17286613. 198 175 223
## # … with 1 more variable: nb_days_bloom <dbl>
To regress abundances of HAB-forming organisms on environmental
variables, use the function relate_env()
. This computes a
quantile-based regression of abundances on all environmental variables
using the Random Forest algorithm, computes partial dependence plots for
the most relevant variables and plots them.
suppressMessages(library("tidyverse"))
d <- filter(ost, benthic>0) %>% as.data.frame()
relate_env(sqrt(d$benthic), select(d, chla:temperature), n=3)
## Ranger result
##
## Call:
## ranger::ranger(y ~ ., data = d, importance = "impurity", quantreg = TRUE, min.node.size = min.node.size, ...)
##
## Type: Regression
## Number of trees: 500
## Sample size: 122
## Number of independent variables: 10
## Mtry: 3
## Target node size: 5
## Variable importance mode: impurity
## Splitrule: variance
## OOB prediction error (MSE): 56327.04
## R squared (OOB): -0.02175949
## Warning: `fun.y` is deprecated. Use `fun` instead.
Read the help of each function for more information.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.