feature_selection: Feature selection

Description Usage Arguments Value References Examples

View source: R/feature_selection.R

Description

Feature selection.

Usage

1
feature_selection(tica.o, component, topN = 0, CLkurt = 0)

Arguments

tica.o

The TICA result object, which can be obtained by function *DoTICA*.

component

The component ID.

topN

The number of top-ranked features to select from each inferred component.

CLkurt

The confidence level estimated by top-ranked features' kurtosis.

Value

pred.idx The list of predicted feature index.

k.p Visualizing the kurtosis of predicted feature.

References

Teschendorff AE, Han J, Paul D, Virta J, Nordhausen K. Tensorial Blind Source Separation for Improved Analysis of Multi-Omic Data. Genome Biology (2018) 19:76.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
data(buccalbloodtensor);
Dim.l <- EstDim(buccalbloodtensor$data);
dim <- Dim.l$dim;
tica.o <- DoTICA(Data = buccalbloodtensor$data, dim = dim, method = "FOBI");
feature.n <- feature_selection(tica.o = tica.o, component = 12, topN = 62);
buccalbloodtensor$testDMCs[feature.n$pred.idx[[1]]];
buccalbloodtensor$testDMCs[feature.n$pred.idx[[2]]];
feature.k <- feature_selection(tica.o = tica.o, component = 12, CLkurt = 0.95);
buccalbloodtensor$testDMCs[feature.k$pred.idx[[1]]];
buccalbloodtensor$testDMCs[feature.k$pred.idx[[2]]];
feature.k$k.p[[1]];
feature.k$k.p[[2]];
 

jinghan1018/tensorICA documentation built on March 23, 2020, 5:26 a.m.