Description Usage Arguments Value References Examples
View source: R/feature_selection.R
Feature selection.
1 | feature_selection(tica.o, component, topN = 0, CLkurt = 0)
|
tica.o |
The TICA result object, which can be obtained by function *DoTICA*. |
component |
The component ID. |
topN |
The number of top-ranked features to select from each inferred component. |
CLkurt |
The confidence level estimated by top-ranked features' kurtosis. |
pred.idx The list of predicted feature index.
k.p Visualizing the kurtosis of predicted feature.
Teschendorff AE, Han J, Paul D, Virta J, Nordhausen K. Tensorial Blind Source Separation for Improved Analysis of Multi-Omic Data. Genome Biology (2018) 19:76.
1 2 3 4 5 6 7 8 9 10 11 12 13 | data(buccalbloodtensor);
Dim.l <- EstDim(buccalbloodtensor$data);
dim <- Dim.l$dim;
tica.o <- DoTICA(Data = buccalbloodtensor$data, dim = dim, method = "FOBI");
feature.n <- feature_selection(tica.o = tica.o, component = 12, topN = 62);
buccalbloodtensor$testDMCs[feature.n$pred.idx[[1]]];
buccalbloodtensor$testDMCs[feature.n$pred.idx[[2]]];
feature.k <- feature_selection(tica.o = tica.o, component = 12, CLkurt = 0.95);
buccalbloodtensor$testDMCs[feature.k$pred.idx[[1]]];
buccalbloodtensor$testDMCs[feature.k$pred.idx[[2]]];
feature.k$k.p[[1]];
feature.k$k.p[[2]];
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.