| phgs | R Documentation |
Function for executing the partitioned hybrid greedy search (pHGS) algorithm, a combination of the partitioned PC (pPC) algorithm, the p-value adjacency thresholding (PATH) algorithm, and the hybrid greedy initialization (HGI) algorithm.
phgs( x, maximize = "tabu", maximize.args = NULL, alpha = NULL, max.sx = NULL, maxp = NULL, path = 1, min_alpha = 1e-05, max_wthn_sx = max.sx, max_btwn_sx = max.sx, max_btwn_nbr = ncol(x) - 2, sort_pval = TRUE, max_groups = 20, true_bn = NULL, cluster = NULL, whitelist = NULL, blacklist = NULL, debug = FALSE )
x, maximize, maximize.args, alpha, max.sx, maxp, path, min_alpha, max_wthn_sx, max_btwn_sx, max_btwn_nbr, sort_pval, max_groups, true_bn, cluster, whitelist, blacklist, debug |
see |
See bnsl.
A Bayesian network as an object of class bn.
Jireh Huang (jirehhuang@ucla.edu) #' @references Huang, J., & Zhou, Q. (2022). Partitioned hybrid learning of Bayesian network structures. Machine Learning. https://doi.org/10.1007/s10994-022-06145-4
bnsl, ppc
## Read Bayesian network object
true_bn <- bnrepository("child")
## Generate data and relevel for simplicity
set.seed(1)
x <- bnlearn::rbn(true_bn, n = 1e4)
x <- as.data.frame(sapply(x, function(x) as.factor(as.integer(x) - 1L)),
stringsAsFactors = TRUE)
## pHGS (pPC with PATH and HGI) with hill-climbing
bn1 <- phgs(x = x, maximize = "hc",
maximize.args = list(maxp = 8, restart = 10, perturb = 10),
alpha = 1e-2, max.sx = 3, maxp = 8, path = 10,
min_alpha = 1e-5, sort_pval = TRUE, max_groups = 20,
debug = TRUE)
## pHGS (pPC with PATH and HGI) with tabu search
bn2 <- phgs(x = x, maximize = "tabu",
maximize.args = list(maxp = 8, tabu = 10, max.tabu = 10),
alpha = 1e-2, max.sx = 3, maxp = 8, path = 10,
min_alpha = 1e-5, sort_pval = TRUE, max_groups = 20,
debug = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.