step_aquifer_leaky | R Documentation |
hantush_jacob 1955 solution for a leaky aquifer
step_aquifer_leaky(
.rec,
time,
flow_rate,
leakage = 100,
radius = 100,
storativity = 1e-06,
transmissivity = 1e-04,
precision = 1e-10,
role = "predictor",
...
)
.rec |
the R6 recipe object. |
time |
the time for evaluation (t) |
flow_rate |
the flow rate from the well (L^3/t) |
leakage |
the leakage defined by hantush (smaller indicates more leaky) |
radius |
the distance to the observation well (L) |
precision |
the precision of the solution (default 1e-10) |
role |
character - the name of the role |
... |
additional arguments |
The drawdown using the Hantush and Jacob 1955 model
Prodanoff, J.H.A., Mansur, W.J. and Mascarenhas, F.C.B., 2006. Numerical evaluation of Theis and Hantush-Jacob well functions. Journal of hydrology, 318(1-4), pp.173-183. eq: 10, 11, 12
Hantush, M.S. and C.E. Jacob, 1955. Non-steady radial flow in an infinite leaky aquifer, Am. Geophys. Union Trans., vol. 36, no. 1, pp. 95-100.
Other aquifer:
step_aquifer_constant_drawdown()
,
step_aquifer_grf()
,
step_aquifer_patch()
,
step_aquifer_theis()
,
step_aquifer_theis_aniso()
,
step_aquifer_wellbore_storage()
time <- 1:2000
flow_rate <- c(rep(0.001, 500),
rep(0.002, 500),
rep(0.0, 1000))
# high
dat <- data.frame(time = 1:2000, flow_rate = flow_rate)
hj_100 <- recipe(flow_rate~time, dat) |>
step_aquifer_leaky(time,
flow_rate,
leakage = 100,
radius = 100,
storativity = 1e-6,
transmissivity = 1e-4) |>
plate()
# medium
hj_200 <- recipe(flow_rate~time, dat) |>
step_aquifer_leaky(time,
flow_rate,
leakage = 200,
radius = 100,
storativity = 1e-6,
transmissivity = 1e-4) |>
plate()
# low
hj_1000 <- recipe(flow_rate~time, dat) |>
step_aquifer_leaky(time,
flow_rate,
leakage = 1000,
radius = 100,
storativity = 1e-6,
transmissivity = 1e-4) |>
plate()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.