#' Entrena nnet
#' El data.frame solo debe tener las columnas de input, y el output con el nombre '.outcome'.
#'
#' @param training data.frame de entrenamiento.
#' @param fitControl parametros para el entrenamiento.
#' @param grid espacio de busqueda de parametros.
#'
#' @return Resultados del entrenamiento.
#' @export
#'
#' @examples
#' \dontrun{
#' x <- time_series_prediction_format(AAPL, max_horizon = 1, max_window = 2)
#' train_nnet(x, grid = c(size = 10, decay = 0.1))
#' }
train_nnet <- function(training, fitControl, grid) {
caret::train(.outcome ~ .,
data = training,
method = "nnet",
trControl = fitControl,
verbose = FALSE,
tuneGrid = grid,
# nnet params
linout = TRUE,
skip = TRUE,
MaxNWts = 10000,
maxit = 1000,
)
}
#' Train Random Forest
#'
#' @param training training dataset
#' @param fitControl parametros para el entrenamiento.
#' @param grid tuning grid
#'
#' @return the training information
#' @export
train_rf <- function(training, fitControl, grid = NULL) {
caret::train(.outcome ~ .,
data = training,
method = "rf",
trControl = fitControl,
verbose = FALSE,
tuneGrid = grid,
# rf params
ntree = 100,
maxnodes = 100,
proximity = TRUE
)
}
#' Train evtree
#'
#' @param training training dataset
#' @param fitControl parametros para el entrenamiento.
#' @param grid tuning grid
#'
#' @return the training information
#' @export
train_evtree <- function(training, fitControl, grid = NULL) {
caret::train(.outcome ~ .,
data = training,
method = "evtree",
trControl = fitControl,
verbose = FALSE,
tuneGrid = grid,
# evtree params
ntrees = 300,
niterations = 1000
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.