run.pca: Principal Component Analysis function

Description Usage Arguments Value Examples

View source: R/pcanalysis.R

Description

This function performs a principal component analysis on a numerical data matrix.

Usage

1
run.pca(x, center = TRUE, scale = FALSE, svd = TRUE)

Arguments

x

input data matrix or data frame (numerical)

center

zero center the data (logical value, default is TRUE)

scale

scale the data to unit variance before analysis (logical value, default is FALSE)

svd

indicate whether to perform single value decomposition (logical value, default is TRUE), otherwise perform eigen decomposition

Value

run.pca returns a list with the following elements:

Examples

1
data.pca <- run.pca(data, center = TRUE, scale = TRUE, svd = TRUE)

jmcole003/pcanalysis documentation built on Dec. 21, 2021, 1:12 a.m.