# AUTHOR: JMZ
# Modified: 1/4/19
# Script code to create ET for each site. Allows us to access the data later
# Read in APPEARS albedo data for comparison
# VERIFY FLAGS ARE CORRECT AND the SCALE FACTOR
library(tidyverse)
library(lubridate)
library(devtools)
# Pull in the mod GPP data
mod_ET_data <- read_csv('data-raw/et-periodically-repeating-data/ET-Periodically-Repeating-Data-MOD16A2-006-results.csv') %>%
select(ID,Date,
matches("_ET_500m|_bitmask")) %>%
rename(site=ID,date=Date,value=3,flag=4) %>% # Rename the columns
mutate(date=ymd(date),time = decimal_date(date),product='ET',flag=str_detect(flag,pattern="0b00000000")) # I think this is the highest quality flag ...
# Pull in the myd GPP data
myd_ET_data <- read_csv('data-raw/et-periodically-repeating-data/ET-Periodically-Repeating-Data-MYD16A2-006-results.csv') %>%
select(ID,Date,
matches("_ET_500m|_bitmask")) %>%
rename(site=ID,date=Date,value=3,flag=4) %>% # Rename the columns
mutate(date=ymd(date),time = decimal_date(date),product='ET',flag=str_detect(flag,pattern="0b00000010")) # I think this is the highest quality flag ...
# Now join these up together and clean up
ET_data <- rbind(myd_ET_data,mod_ET_data) %>% filter(flag & time >= 2012) %>%
mutate(value=value*0.1) %>% # I think we need to multiply by the scale factor ...
select(site,date,time,value,product) %>%
arrange(site,date)
use_data(ET_data,overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.