A package to read, process and model a specific clinical dataset in order to investigate the PEDIS classification system used to asses the clinicial picture of the Diabetic Foot Ulcer.
# data import # library contain dataset pedis library(PEDISdata) # data preprocessing # create output vector and matrix of predictors X_y <- prepare_X_y(data = pedis, outcome = "minor_amputation", vars = c("p", "d", "i", "s")) folds <- create_folds(y = X_y$y) # Model training fit <- train_pedis(X = X_y$X, y = X_y$y, folds = folds) # Prediction # prediction for the first fold in the list train_predicted <- train_predict(folds = folds, X_y = X_y) train_auc(folds = folds, X_y = X_y) train_roc <- roc(train_predicted) # Test Set test_predicted <- test_predict(fit) test_auc(fit) test_roc <- roc(test_predicted) plot(test_roc) # plot pROC::smooth(test_roc) pROC::smooth(train_roc) plot_train_test(train_roc, test_roc)
library(PEDISdata) library(magrittr) library(dplyr) # Read the data pedis <- read_all_pedis(path = "~/r-projects/proj_wunde/pedis-diabetic-care/datasets") pedis <- pedis %>% mutate(pedis_wert = p + e + d + i + s) # Create list with X and y X_y <- prepare_X_y(data = pedis, outcome = "amputation", vars = c("p")) # Create folds folds <- create_folds(y = X_y$y) # Fit the model (with caret in the backyard) fit <- PEDISdata::train_pedis(X = X_y$X, y = X_y$y, folds = folds) # In sample error train_predicted <- train_predict(folds = folds, X_y = X_y) train_auc(folds = folds, X_y = X_y) %>% pull("auc") %>% mean train_roc <- roc(train_predicted) # Out of sample error (test error) test_predicted <- test_predict(fit) test_auc(fit = fit) %>% mean test_roc <- roc(test_predicted) # Compare AUC Curves plot_train_test(trainROC = train_roc, testROC = test_roc)
library(PEDISdata) pedis <- read_all_pedis(path = "~/r-projects/proj_wunde/pedis-diabetic-care/datasets") pedis_ordinal <- pedis %>% mutate_at(c("p", "e_ordinal_5", "d", "i", "s"), factor, levels = 1:4) %>% select(p, e = e_ordinal_5, d, i, s, amputation) X_y <- prepare_X_y(data = pedis_ordinal, outcome = "amputation", vars = c("p", "e", "d", "i", "s")) create_folds(y = X_y$y) train_pedis(X = X_y$X, y = X_y$y, folds = folds) data <- cbind(as.data.frame(X_y$X), y = if_else(X_y$y == "yes", 1, 0)) glm(y ~ ., data = data, family = binomial(link = "logit"))
# Eine ähnliche Gewichtung wie Pickwell machen. # Dann eine gewichtete Regression durchführe # Dann noch CRP Werte einfließen lassen # Argument: Abfrage wird genauer, aber auch komplexer, direkte einbindung in die DOkuementation als Rückkopplung. # Zusätzlich die Kreuzvalierung diskutieren.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.