knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
First, let's load fieldwalkr
and generate some some dummy data to simulate a survey.
library("fieldwalkr") library("sf") library("ggplot2") frame <- rpolygon() # Sample frame sites <- st_sample(frame, 100) # Target points units <- quadrats(frame, size = 200) # Survey units # Plot theme_nocoords <- function() { return(theme(axis.text = element_blank())) } ggplot() + geom_sf(data = frame, fill = "white") + geom_sf(data = sites) + ggtitle("sites") + theme_nocoords() ggplot() + geom_sf(data = frame, fill = "white") + geom_sf(data = units, fill = NA) + ggtitle("units") + theme_nocoords()
Modelling detection probability in fieldwalkr
employs the concept of a detection functions.
This concept is drawn from search theory, and specifically Banning and colleague's application of search theory to archaeological survey [@Banning2002-uv; @Banning2006-js; @Banning2011-wo].
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.