#' Ice cream rankings
#'
#' A dataset containing ice cream attributes and rankings from 15 (fictitious)
#' participants.
#'
#' @format A data frame with 150 rows and 7 variables:
#' \describe{
#' \item{Observations}{profile number}
#' \item{Flavor}{flavor of ice cream}
#' \item{Packaging}{packaging of ice cream}
#' \item{Light}{fat content of ice cream}
#' \item{Organic}{is ice cream organic?}
#' \item{individual}{ID for participant}
#' \item{ranking}{ranking of ice cream, from 1 to 10}
#' }
#' @source
#' \url{https://help.xlstat.com/s/article/conjoint-analysis-in-excel-tutorial-new?language=en_US}
#' \url{http://users.telenet.be/samuelfranssens/tutorial_data/icecream.xlsx}
"icecream"
#' Hospital Doctor Patient Dataset
#'
#' A dataset containing simulated data on lung cancer in a
#' three-level-hierarchical structure
#'
#' @format A data frame with 8525 rows and 4 variables:
#' \describe{
#' \item{remission}{cancer in remission? (TRUE/FALSE)}
#' \item{CancerStage}{stage of cancer}
#' \item{Experience}{experience of doctor}
#' \item{DID}{doctor ID}
#' }
#' @source \url{https://stats.idre.ucla.edu/r/codefragments/mesimulation/}
"hdp"
#' School data set
#'
#' A dataset containing simulated data on students in different schools. Note
#' that the variable names are not important as this is simulated data.
#'
#' @format A data frame with 1200 rows and 7 variables:
#' \describe{
#' \item{id}{student ID}
#' \item{extro}{probably extroversion}
#' \item{open}{probably openness for experience}
#' \item{agree}{probably agreeableness}
#' \item{social}{?}
#' \item{class}{ID for class}
#' \item{school}{ID for school}
#' }
#' @source
#' \url{http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/Module9/LMM_Examples.R}
#' \url{http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/Module9/lmm.data.txt}
"school"
#' Fehlende Werte 1 (Missing Values 1)
#'
#' A fictitious dataset containing 4 variables with 30 values missing completly at random.
#'
#' @format A data frame with 100 rows and 4 variables:
#' \describe{
#' \item{IQ}{IQ}
#' \item{Alter}{Alter}
#' \item{LZ}{Lebenszufriedenheit}
#' \item{KFZ}{Besitzen Sie ein Auto?}
#' }
"FW_mcar"
#' Fehlende Werte 2 (Missing Values 2)
#'
#' A fictitious dataset containing 4 variables with 45 values missing at random.
#'
#' @format A data frame with 100 rows and 4 variables:
#' \describe{
#' \item{IQ}{IQ}
#' \item{Alter}{Age}
#' \item{LZ}{life satisfaction}
#' \item{KFZ}{car}
#' }
"FW_mar"
#' Fehlende Werte 3 (Missing Values 3)
#'
#' A fictitious dataset containing 4 variables and a typical pattern of missing values which indicates a break off.
#'
#' @format A data frame with 100 rows and 4 variables:
#' \describe{
#' \item{IQ}{IQ}
#' \item{Alter}{Age}
#' \item{LZ}{life satisfaction}
#' \item{KFZ}{car}
#' }
"FW_abbrecher"
#' Distanzen von 5 deutschen Städten
#'
#' Stadt_dist ist eine Matrix mit den Entfernungen (Luftlinie in km) zwischen
#' 5 deutschen Städten.
#'
#' @format A symmetric data.frame with 5 rows.
"Stadt_dist"
#' Präferenz für Früchte (fruit rating)
#'
#' A fictitious data set with preferences for four different fruits.
#'
#' @format A data frame with 4 rows and 4 variables:
#' \describe{
#' \item{Apfel}{Rating of apple}
#' \item{Birne}{Rating of pear}
#' \item{Kirsche}{Rating of cherry}
#' \item{Aprikose}{Rating of apricot}
#' }
"Obst"
#' Straftaten
#'
#' A data set with similarity ratings for ten criminal offenses measured by pairwise comparison.
#'
#' @format A data frame with 30 rows and 45 variables:
#' \describe{
#' \item{UntSac}{similaryt between failure to assist a person in danger and damage to property}
#' \item{SteTru}{similaryt between tax evasion and drunk driving}
#' \item{SacWid}{similaryt between damage to property and resistance against enforcement officers}
#' \item{RauSte}{similaryt between misappropriation and tax evasion}
#' \item{SteUnt}{similaryt between tax evasion and failure to assist a person in danger}
#' \item{WidKoe}{similaryt between resistance against enforcement officers and damage to property}
#'
#' \item{SteWid}{similaryt between tax evasion and resistance against enforcement officers}
#' \item{EinTru}{similaryt between burglary and drunk driving}
#' \item{KoeSac}{similaryt between misappropriation and damage to property}
#' \item{SteEin}{similaryt between tax evasion and burglary}
#' \item{EinKoe}{similaryt between burglary and damage to property}
#' \item{VerWid}{similaryt between rape and resistance against enforcement officers}
#' \item{WidRau}{similaryt between resistance against enforcement officers and damage to property}
#'
#' \item{UntWid}{similaryt between failure to assist a person in danger and resistance against enforcement officers}
#' \item{KoeTru}{similaryt between misappropriation and drunk driving}
#' \item{EinUnt}{similaryt between burglary and failure to assist a person in danger}
#' \item{TruSac}{similaryt between drunk driving and damage to property}
#' \item{UntVer}{similaryt between failure to assist a person in danger and rape}
#' \item{TruUnt}{similaryt between drunk driving and failure to assist a person in danger}
#'
#' \item{WahSac}{similaryt between misappropriation and damage to property}
#' \item{WidTru}{similaryt between resistance against enforcement officers and drunk driving}
#' \item{TruVer}{similaryt between drunk driving and rape}
#' \item{KoeSte}{similaryt between misappropriation and tax evasion}
#' \item{RauUnt}{similaryt between misappropriation and failure to assist a person in danger}
#' \item{KoeRau}{similaryt between misappropriation and damage to property}
#' \item{WidEin}{similaryt between resistance against enforcement officers and burglary}
#'
#' \item{SteWah}{similaryt between tax evasion and damage to property}
#' \item{KoeVer}{similaryt between misappropriation and damage to property}
#' \item{VerWah}{similaryt between misappropriation and damage to property}
#' \item{EinWah}{similaryt between burglary and damage to property}
#' \item{RauEin}{similaryt between misappropriation and burglary}
#' \item{UntWah}{similaryt between failure to assist a person in danger and damage to property}
#'
#' \item{SacVer}{similaryt between damage to property and rape}
#' \item{RauWah}{similaryt between misappropriation and damage to property}
#' \item{WahKoe}{similaryt between misappropriation and damage to property}
#' \item{RauTru}{similaryt between misappropriation and drunk driving}
#' \item{SteVer}{similaryt between tax evasion and rape}
#' \item{SacEin}{similaryt between damage to property and burglary}
#' \item{RauVer}{similaryt between misappropriation and rape}
#'
#' \item{WahWid}{similaryt between misappropriation and resistance against enforcement officers}
#' \item{RauSac}{similaryt between misappropriation and damage to property}
#' \item{TruWah}{similaryt between drunk driving and damage to property}
#' \item{KoeUnt}{similaryt between misappropriation and failure to assist a person in danger}
#' \item{VerEin}{similaryt between rape and burglary}
#' \item{SteSac}{similaryt between tax evasion and damage to property}
#' }
"Straftaten"
#' Straftaten agreggierte Distanzen
#'
#' A distance matrix with mean aggregated distances for ten criminal offenses
#'
#' @format A distance matrix with 10 objects:
#' \describe{
#' \item{Unt}{failure to assist a person in danger}
#' \item{Ste}{tax evasion}
#' \item{Sac}{damage to property}
#' \item{Rau}{misappropriation}
#' \item{Wid}{resistance against enforcement officers}
#' \item{Tru}{drunk driving}
#' \item{Sac}{damage to property}
#' \item{Ein}{burglary}
#' \item{Ver}{rape}
#' \item{Koe}{bodily injury}
#' }
"St_dist_aggr"
#' Individuelle Distanzen von Straftaten
#'
#' A list of 30 distance matrices with distances for ten criminal offenses.
#' Each matrix represents a individual rating
#'
#' @format A distance matrix with 10 objects:
#' \describe{
#' \item{Unt}{failure to assist a person in danger}
#' \item{Ste}{tax evasion}
#' \item{Sac}{damage to property}
#' \item{Rau}{misappropriation}
#' \item{Wid}{resistance against enforcement officers}
#' \item{Tru}{drunk driving}
#' \item{Sac}{damage to property}
#' \item{Ein}{burglary}
#' \item{Ver}{rape}
#' \item{Koe}{bodily injury}
#' }
"St_dist_ind"
#' Mediation von Lernleistung (Meadiation of learning achievement)
#'
#' A fictitious dataset containing 3 variables for mediation
#'
#' @format A data frame with 30 rows and 3 variables:
#' \describe{
#' \item{Motivation}{Motivation}
#' \item{Lernleistung}{Lernleistung}
#' \item{Unterrichtsguete}{Unterrichtsgüte}
#' }
"Lehr_Lern"
#' Power_Pose
#'
#' A dataset of 16 cases beeing part of an powerposing experiment.
#'
#' @format A data frame with 10 rows and 3 variables:
#' \describe{
#' \item{Pose}{Experimental condition: high powerpose vs. low powerpose}
#' \item{Dominanz}{Dominance rating by the neutral obeserver}
#' \item{Aktivitaet}{Activity}
#' \item{Fuehrung}{External rating of leadership}
#' \item{Moderator}{Moderation effect of Dom x Pose}
#' }
"Power_Pose"
#' 6 Meditationsstudien (6 Studys of Meditation)
#'
#' A shortened dataset from Sedlmeier et al. (2018). The effect of six
#' Meditation studies.
#'
#' @format A data frame with 6 rows and 4 variables:
#' \describe{
#' \item{Studie}{Author of the study}
#' \item{Effekt_r}{Effectsize r}
#' \item{N}{Number of participants}
#' \item{AV}{Measurrement of the dependent variable}
#' }
"Meditation"
#' dataset without publication bias
#'
#' A fictitious dataset with effectsizes from 56 studies.
#'
#' @format A data frame with 56 rows and 3 variables:
#' \describe{
#' \item{N}{Number of participants}
#' \item{r}{Effectsize r}
#' \item{p}{p-value (two.tailed)}
#' }
"pub_bias0"
#' A dataset with publication bias
#'
#' A dataset generated fram pub_bias0 with no nonsignificant p-values.
#'
#' @format A data frame with 28 rows and 3 variables:
#' \describe{
#' \item{N}{Number of participants}
#' \item{r}{Effectsize r}
#' \item{p}{p-value (two.tailed)}
#' }
"pub_bias1"
#' pedersen_2002
#'
#' Number of desired sexual partners
#'
#' @format A dataset of 206 persons and their desired number of sexual partners.
#' A modified Version of Pedersen et al. (2002).
#' \describe{
#' \item{person_id}{ID of participants}
#' \item{desired}{Number of desired sexual partners}
#' \item{sex}{male vs. female}
#' }
"pedersen_2002"
#' VL_17
#'
#' Preference for cats and dogs
#'
#' @format A dataset of 50 preference ratings for cats and dogs.
#' \describe{
#' \item{Hunde}{Preference for dogs}
#' \item{desired}{Preference for cats}
#' }
"VL_17"
#' Mehrere AVs in einem Einzelfall
#'
#' @format Erwins Daten aus einem AB-Einzelfalldesign
#' \describe{
#' \item{Fall}{Name der ProbandInnen}
#' \item{Phase}{Phase im Einzelfalldesign}
#' \item{Pos_Emot}{Positive Emotionen}
#' \item{Neg_Emot}{Negative Emotionen}
#' \item{Angst}{Angstrating}
#' \item{Depression}{Depressionrating}
#' }
"Mehrere_AVs"
#' 6 Meditierende im Multiple Baseline Design (scan-Paket)
#'
#' @format 6 TeilnehmerInnen aus dem Multiple Baseline Experiment von Matko
#' et al. 2021 zur Wirkung von Meditation als scan-Objekt
#' \describe{
#' \item{baseline}{Dauer der Baseline (d)}
#' \item{study_day}{Studientag}
#' \item{wellbeing}{Wohlbefinden}
#' \item{phase}{Phase im Multiple Baseline Design}
#' }
"Wellbeing_Daten"
#' Lebenszufriedenheit von 6 Einzelfällen
#'
#' 6 Meditierende im Multiple Baseline Design (data.frame)
#'
#' @format 6 TeilnehmerInnen eines multiple Baseline Experiment von Matko
#' et al. 2021 zur Wirkung von Meditation als data.frame im long-Format.
#' \describe{
#' \item{baseline}{Dauer der Baseline (d)}
#' \item{study_day}{Studientag}
#' \item{wellbeing}{Wohlbefinden}
#' \item{phase}{Phase im Multiple Baseline Design}
#' }
"Wellbeing_kurz"
#' Befragung zur Arbeitszufriedenheit
#'
#' 176 Arbeitskräfte beantworten 10 Items zur Arbeitssituation.
#'
#' @format 176 Fälle bei 10 Variablen (data.frame)
#' \describe{
#' \item{S1}{Mein Arbeitgeber achtet auf einen ordnungsgemäßen Arbeitsplatz.}
#' \item{S2}{Mein Arbeitgeber bietet mir die modernste / aktuellste Sicherheitsausstattung.}
#' \item{S3}{Mein Arbeitgeber hat Arbeitssicherheit Vorrang vor der Produktion.}
#' \item{Q1}{In meinem Betrieb geht Produktqualität vor Quantität.}
#' \item{Q2}{In meinem Betrieb wird Ressourcen Verschwendung vermieden.}
#' \item{Q3}{In meinem Betrieb versuchen erkrankte Mitarbeiter so schnell wie möglich an den Arbeitsplatz zurückzukehren.}
#' \item{Z1}{Ich bin zufrieden mit dem Organisationsklima und dem Teamgeist.}
#' \item{Z2}{Ich bin zufrieden mit den Arbeitsbedingungen.}
#' \item{Z3}{Ich bin zufrieden mit den Karrieremöglichkeiten in meinem Betrieb.}
#' \item{Lohn}{Wohlbefinden}
#' }
"Arbeit"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.