| wp.mc.t | R Documentation | 
Power analysis for t-test based on Monte Carlo simulation
wp.mc.t(n = NULL, R0 = 1e+05, R1 = 1000, mu0 = 0, mu1 = 0, 
sd = 1, skewness = 0, kurtosis = 3, alpha = 0.05, 
type = c("two.sample", "one.sample", "paired"), 
alternative = c("two.sided", "less", "greater"))
| n | Sample size | 
| R0 | Number of replications under the null | 
| R1 | Number of replications | 
| mu0 | Population mean under the null | 
| mu1 | Population mean under the alternative | 
| sd | Standard deviation | 
| skewness | Skewness | 
| kurtosis | kurtosis | 
| alpha | Significance level | 
| type | Type of anlaysis | 
| alternative | alternative hypothesis | 
Zhang, Z., & Yuan, K.-H. (2018). Practical Statistical Power Analysis Using Webpower and R (Eds). Granger, IN: ISDSA Press.
set.seed(20220722)
########## Chapter 16. Monte Carlo t-test #############
wp.mc.t(n=20 , mu0=0, mu1=0.5, sd=1, skewness=0, 
kurtosis=3, type = c("one.sample"), alternative = c("two.sided"))
wp.mc.t(n=40 , mu0=0, mu1=0.3, sd=1, skewness=1, 
kurtosis=6, type = c("paired"), alternative = c("greater"))
wp.mc.t(n=c(15, 15), mu1=c(0.2, 0.5), sd=c(0.2, 0.5), 
skewness=c(1, 2), kurtosis=c(4, 6), type = c("two.sample"), alternative = c("less"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.