bmem.em.boot | R Documentation |
Bootstrap for EM
bmem.em.boot(x, ram, v, robust = FALSE, varphi = 0.1, st= "i", boot = 1000, max_it = 500, parallel=FALSE, ncore=1,...)
x |
A data set |
ram |
RAM path for the mediaiton model |
v |
Indices of variables used in the mediation model. If omitted, all variables are used. |
robust |
Roubst method |
varphi |
Percent of data to be downweighted |
st |
Starting values |
boot |
Number of bootstraps. Default is 1000. |
max_it |
Maximum number of iterations in EM |
parallel |
Whether to use parallel method to calculate. |
ncore |
Numbers of core for parallel method. |
... |
Other options for |
The indirect effect can be specified using equations such as a*b
, a*b+c
, and a*b*c+d*e+f
. A vector of indirect effects can be used indirect=c('a*b', 'a*b+c')
.
par.boot |
Parameter estimates from bootstrap samples |
par0 |
Parameter estimates from the orignal samples |
Zhiyong Zhang and Lijuan Wang
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.