README.md

saeHB.gpois

The package provides function and datasets for area level of Small Area Estimation using Hierarchical Bayesian Method under Generalized Poisson Distribution.

Author

Joice Evangelista Lase, Azka Ubaidillah

Maintaner

Joice Evangelista Lase 221810359@stis.ac.id

Function

Installation

You can install the development version of saeHB.gpois from GitHub with:

# install.packages("devtools")
devtools::install_github("joiceevangelista/saeHB.gpois")

Example

This is a basic example of using GPois() function to make an estimate based on synthetic data in this package

library(saeHB.gpois)
## For data without any non-sampled area
data(dataGPois)       # Load dataset
## For data with non-sampled area use dataHNBNs
## Fitting model
result <- GPois(y ~ x1 + x2, data = dataGPois)
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 50
#>    Unobserved stochastic nodes: 55
#>    Total graph size: 1123
#> 
#> Initializing model
#> 
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 50
#>    Unobserved stochastic nodes: 55
#>    Total graph size: 1123
#> 
#> Initializing model
#> 
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 50
#>    Unobserved stochastic nodes: 55
#>    Total graph size: 1123
#> 
#> Initializing model

Small Area mean Estimates

result$Est

Estimated random effect variances

result$refVar

Estimated model coefficient

result$coefficient

References



joiceevangelista/saeHB.gpois documentation built on June 15, 2022, 9:56 a.m.