The package provides function and datasets for area level of Small Area Estimation using Hierarchical Bayesian Method under Generalized Poisson Distribution.
Joice Evangelista Lase, Azka Ubaidillah
Joice Evangelista Lase 221810359@stis.ac.id
GPois()
The function produces small area estimator under Generalized Poisson Model Using Hierarchical Bayesian Method with Generalized Poisson distribution based on GP-1 model introduced by Consul (1989).You can install the development version of saeHB.gpois
from
GitHub with:
# install.packages("devtools")
devtools::install_github("joiceevangelista/saeHB.gpois")
This is a basic example of using GPois()
function to make an estimate based on synthetic data in this package
library(saeHB.gpois)
## For data without any non-sampled area
data(dataGPois) # Load dataset
## For data with non-sampled area use dataHNBNs
## Fitting model
result <- GPois(y ~ x1 + x2, data = dataGPois)
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 50
#> Unobserved stochastic nodes: 55
#> Total graph size: 1123
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 50
#> Unobserved stochastic nodes: 55
#> Total graph size: 1123
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 50
#> Unobserved stochastic nodes: 55
#> Total graph size: 1123
#>
#> Initializing model
Small Area mean Estimates
result$Est
Estimated random effect variances
result$refVar
Estimated model coefficient
result$coefficient
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.