View source: R/run_classifier.R
| input_fn_builder | R Documentation |
input_fn closure to be passed to TPUEstimatorCreates an input_fn closure to be passed to TPUEstimator. The output
of this closure is the (modified) output of
tensorflow::tf$data$Dataset$from_tensor_slices (an object of class
"tensorflow.python.data.ops.dataset_ops.BatchDataset").
input_fn_builder(features, seq_length, is_training, drop_remainder)
features |
A list of features (objects of class |
seq_length |
Integer; the maximum length (number of tokens) of each example. (Examples should already be padded to this length by this point.) |
is_training |
Logical; whether these are training examples. |
drop_remainder |
Logical; whether to drop the extra if the number of elements in the dataset is not an exact multiple of the batch size, |
An input_fn closure to be passed to TPUEstimator.
## Not run:
tokenizer <- FullTokenizer("vocab.txt")
seq_len <- 15L
input_ex1 <- InputExample(
guid = 1L,
text_a = "Some text to classify.",
text_b = "More wordy words.",
label = "good"
)
input_ex2 <- InputExample(
guid = 2L,
text_a = "This is another example.",
text_b = "So many words.",
label = "bad"
)
feat <- convert_examples_to_features(
examples = list(input_ex1, input_ex2),
label_list = c("good", "bad"),
max_seq_length = seq_len,
tokenizer = tokenizer
)
input_fn <- input_fn_builder(
features = feat,
seq_length = seq_len,
is_training = TRUE,
drop_remainder = FALSE
)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.