knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/" )
AquaticLifeHistory allows users to undertake fisheries life history analyses using contemporary approaches as simple R functions. These analyses currently include length-at-age modelling using a multi-model approach, estimating age-at-maturity and length-at-maturity. The main package functions are:
Estimate_Growth()
performs length-at-age analyses using a von Bertalanffy growth model, Gompertz model and/or Logistic model.Estimate_Age_Maturity()
Estimates age-at-maturity using either binomial maturity or proportion mature data and age.Estimate_Len_Maturity()
Estimates age-at-maturity using either binomial maturity or proportion mature data and length.You can install the latest released version from CRAN with:
install.packages("AquaticLifeHistory")
You can install the development version of AquaticLifeHistory from Github with:
# install.packages("devtools") devtools::install_github("jonathansmart/AquaticLifeHistory")
library(AquaticLifeHistory) # load example data set data("growth_data") # Run function with three default model candidates. # Model parameters, AIC values are returned and a plot with bootstrapped CI's is printed to examine fits. Estimate_Growth(growth_data)
# load example data set data("maturity_data") # Run function to estimate age-at-maturity parameters Estimate_Age_Maturity(maturity_data) # A plot can also be returned with bootstrapped CI's. Estimate_Age_Maturity(maturity_data, return = "plot")
For further examples of these and other functions use the provided vignettes
browseVignettes("AquaticLifeHistory")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.