'debug.R'
geom's
, and not with the functions from in this package, please see:
if (!require(devtools)) {
install.packages('devtools')
}
devtools::install_github('jorvlan/openvis')
library("openvis")
Step 1: Initialize the data-format
df_1x1 <- data_1x1(
array_1 = iris$Sepal.Length[1:50],
array_2 = iris$Sepal.Length[51:100],
jit_distance = .09,
jit_seed = 321)
> head(df_1x1)
y_axis x_axis id jit
1 5.1 1 1 1.0820609
2 4.9 1 2 1.0787114
3 4.7 1 3 0.9528797
4 4.6 1 4 0.9559133
5 5.0 1 5 0.9802922
6 5.4 1 6 0.9714124
> tail(df_1x1)
y_axis x_axis id jit
95 5.6 2 45 2.059387
96 5.7 2 46 2.004848
97 5.7 2 47 2.066980
98 6.2 2 48 2.074479
99 5.1 2 49 1.939248
100 5.7 2 50 1.999004
Step 2: Create a vertical or horizontal 1 x 1 Raincloud
figure_1x1_v <- raincloud_1x1(df_1x1, ort = 'v') +
scale_x_continuous(breaks=c(1,2), labels=c("Group1", "Group2"), limits=c(0, 3)) +
xlab("Groups") +
ylab("Score") +
theme_classic()
figure_1x1_v
figure_1x1_h <- raincloud_1x1(df_1x1, ort = 'h') +
scale_x_continuous(breaks=c(1,2), labels=c("Group1", "Group2"), limits=c(0, 3)) +
xlab("Groups") +
ylab("Score") +
theme_classic()
figure_1x1_h
figure_1x1_rm <- raincloud_1x1_repmes(df_1x1, align_clouds = FALSE) +
scale_x_continuous(breaks=c(1,2), labels=c("Before", "After"), limits=c(0, 3)) +
xlab("States") +
ylab("Score") +
theme_classic()
figure_1x1_rm
figure_1x1_rm_2.0 <- raincloud_1x1_repmes(df_1x1, align_clouds = TRUE) +
scale_x_continuous(breaks=c(1,2), labels=c("Before", "After"), limits=c(0, 3)) +
xlab("States") +
ylab("Value") +
theme_classic()
figure_1x1_rm_2.0
Step 1: Initialize the data-format
df_2x2_1.0 <- data_2x2(
array_1 = iris$Sepal.Length[1:50],
array_2 = iris$Sepal.Length[51:100],
array_3 = iris$Sepal.Length[101:150],
array_4 = iris$Sepal.Length[81:130],
label_1 = 'congruent',
label_2 = 'incongruent',
jit_distance = .05,
jit_seed = 321,
spread_x_ticks = TRUE) # FALSE if 2 x-ticks
> head(df_2x2_1.0)
y_axis x_axis id group jit
1 5.1 1 1 congruent 1.0455894
2 4.9 1 2 congruent 1.0437286
3 4.7 1 3 congruent 0.9738220
4 4.6 1 4 congruent 0.9755074
5 5.0 1 5 congruent 0.9890512
6 5.4 1 6 congruent 0.9841180
> tail(df_2x2_1.0)
y_axis x_axis id group jit
195 6.7 4 45 incongruent 4.025752
196 7.2 4 46 incongruent 3.980672
197 6.2 4 47 incongruent 4.000718
198 6.1 4 48 incongruent 4.001973
199 6.4 4 49 incongruent 3.972786
200 7.2 4 50 incongruent 4.042541
Step 2: Create a raincloud plot with 4 x-ticks or with 2 x-ticks
figure_2x2_1.0 <- raincloud_2x2_repmes(df_2x2_1.0, spread_x_ticks = TRUE) +
scale_x_continuous(breaks=c(1,2,3,4),
labels=c("low-congr", "high-congr", "low-incongr", "high-incongr"),
limits=c(0, 5)) +
xlab("Conditions") +
ylab("Score") +
theme_classic()
figure_2x2_1.0
df_2x2_2.0 <- data_2x2(
array_1 = iris$Sepal.Length[1:50],
array_2 = iris$Sepal.Length[51:100],
array_3 = iris$Sepal.Length[101:150],
array_4 = iris$Sepal.Length[81:130],
label_1 = 'congruent',
label_2 = 'incongruent',
jit_distance = .05,
jit_seed = 321,
spread_x_ticks = FALSE)
```
```r
> head(df_2x2_2.0)
y_axis x_axis id group jit
1 5.1 1 1 congruent 1.0455894
2 4.9 1 2 congruent 1.0437286
3 4.7 1 3 congruent 0.9738220
4 4.6 1 4 congruent 0.9755074
5 5.0 1 5 congruent 0.9890512
6 5.4 1 6 congruent 0.9841180
> tail(df_2x2_2.0)
y_axis x_axis id group jit
195 6.7 2.01 45 incongruent 2.035752
196 7.2 2.01 46 incongruent 1.990672
197 6.2 2.01 47 incongruent 2.010718
198 6.1 2.01 48 incongruent 2.011973
199 6.4 2.01 49 incongruent 1.982786
200 7.2 2.01 50 incongruent 2.052541
figure_2x2_2.0 <- raincloud_2x2_repmes(df_2x2_2.0, spread_x_ticks = FALSE) +
scale_x_continuous(breaks=c(1,2), labels=c("Before", "After"), limits=c(0, 3)) +
xlab("States") +
ylab("Score") +
theme_classic()
figure_2x2_2.0
Step 1: Initialize the data-format
df_2x3 <- data_2x2(
array_1 = iris$Sepal.Length[1:50],
array_2 = iris$Sepal.Length[51:100],
array_3 = iris$Sepal.Length[101:150],
array_4 = iris$Sepal.Length[81:130],
array_5 = iris$Sepal.Length[21:70],
array_6 = iris$Sepal.Length[41:90],
label_1 = 'Drug',
label_2 = 'Placebo',
jit_distance = .07,
jit_seed = 321)
> head(df_2x3)
y_axis x_axis id group jit
1 5.1 1 1 Drug 1.0638251
2 4.9 1 2 Drug 1.0612200
3 4.7 1 3 Drug 0.9633509
4 4.6 1 4 Drug 0.9657103
5 5.0 1 5 Drug 0.9846717
6 5.4 1 6 Drug 0.9777652
> tail(df_2x3)
y_axis x_axis id group jit
295 5.4 3.01 45 Placebo 3.073854
296 6.0 3.01 46 Placebo 3.062774
297 6.7 3.01 47 Placebo 3.077949
298 6.3 3.01 48 Placebo 3.003069
299 5.6 3.01 49 Placebo 2.965916
300 5.5 3.01 50 Placebo 2.950490
Step 2: Create a vertical or horizontal 2 x 3 Raincloud
figure_2x3_v <- raincloud_2x3_repmes(df_2x3, ort = 'v') +
scale_x_continuous(breaks=c(1,2,3),
labels=c("Time-1", "Time-2", "Time-3"),
limits=c(0, 4)) +
xlab("States") +
ylab("Score") +
theme_classic()
figure_2x3_v
figure_2x3_h <- raincloud_2x3_repmes(df_2x3, ort = 'h') +
scale_x_continuous(breaks=c(1,2,3),
labels=c("1", "2", "3"),
limits=c(0, 4)) +
xlab("States") +
ylab("Score") +
theme_classic()
figure_2x3_h
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.