gridCV | R Documentation |
For a given method, the values will be tuned systematically by iterating through each of the values provided in the model$tune.parameters and compared to all of the other model$tune.parameters. The hyper parameters are the tuning parameter values with the highest error value.
gridCV(data, predictor, model, folds = 10)
data |
Input to the model in a data frame format |
predictor |
A string of the vector of the validation set that contains the true values of the dependent variable. |
folds |
The number of folds in the cross validation method. Default is 10. |
method |
The function call used to learn the model |
model$method.parameters |
Additional parameters passed through to the method to learn the model. This should not include parameters that are going to be predicted. |
model$tune.parameters |
Parameters that will be predicted based on the cross- validation error. This should be passed through as a list with each of the objects equal to an array of values to test. |
model$pred.parameters |
Parameters required to use the predict function on the method type. There is no need to pass values for the model or the data, they are already provided. |
A list with the values of the hyper parameters stored as the parameter object. Also the overall cross-validated error is reported as the error object. And all of the grid values and their errors are reported as the tune.grid object.
caret::train()
svm.radial.hyper <- gridCV( method = svm, model$method.parameters = list(kernel="radial"), folds = 4, data = weather.train, predictor = "RainTomorrow", tune = list("gamma" = 10^(1:3), "cost" = 10^(-1:0)) ) ## [1] "Tuning..." ## gamma cost error ## 0.1000000 0.1000000 0.8309324 ## gamma cost error ## 1.00 0.10 0.78 ## gamma cost error ## 10.00 0.10 0.78 ## gamma cost error ## 100.00 0.10 0.78 ## gamma cost error ## 1000.00 0.10 0.78 ## gamma cost error ## 0.100000 1.000000 0.852933 ## gamma cost error ## 1.00 1.00 0.78 ## gamma cost error ## 10.00 1.00 0.78 ## gamma cost error ## 100.00 1.00 0.78 ## gamma cost error ## 1000.00 1.00 0.78
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.