pseudo_sdc | R Documentation |
Signal drift correction using QC samples present in some batches but absent in others.
pseudo_sdc(
df = NULL,
n.cores = 1,
train.batch = NULL,
test.breaks = NULL,
test.window = NULL,
test.index = NULL,
criteria = "MSE",
qc.label = NULL,
qc.multibatch = FALSE,
min.qc = 5,
quantile.increment = 1,
log_transform = TRUE,
mad_outlier = TRUE,
mad_threshold = 3
)
df |
The dataframe containing peak data. At minimum should contain columns labeled: name, sample, batch, compound, area, experiment_index, batch_index. |
n.cores |
|
train.batch |
|
test.breaks |
|
test.window |
|
test.index |
|
criteria |
|
qc.label |
|
min.qc |
|
quantile.increment |
|
log_transform |
|
mad_outlier |
|
mad_threshold |
|
list()
containing:
df (original input data)
df_pseudoQC (data with pseudoQC calculated samples included). Includes an additional column labeled 'class' which categorizes true QC, Sample, Pseudo_QC samples.
df_pseudoQC_corrected (signal drift corrected data using pseudoQC samples). Same columns as df_pseudoQC returned, with an aditional 'area_corrected' column designating the signal drift corrected data.
criteria_table (table with results for criteria applied along with the others not-used).
sim_dat = simulate_data(db_ids = "FIO00738",
nsamps_per_batch = 100,
xls_file_name = system.file("extdata", "Index.xls", package = "pseudoDrift"),
valid_sdf_file = system.file("extdata", "valid-test.sdf", package = "pseudoDrift"))
df = sim_dat[["t4_sim_mat"]][[1]]
sdc_out = pseudo_sdc(df = df,
train.batch = "B3",
test.breaks = seq(2,3,1),
test.window = seq(1,3,2),
test.index = seq(2,3,1),
qc.label = "QC",
min.qc = 2)
list2env(sdc_out ,.GlobalEnv)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.