knitr::opts_chunk$set(echo = TRUE)
nano <- params$nano design <- params$design design <- design[design$include == 1,] counts <- nano$counts counts <- removeAnnot(counts) counts <- counts[,colnames(counts) %in% design$file] design <- design[with(design, order(file)),] counts <- counts[, with(counts, order(colnames(counts)))] nano$counts <- cbind(nano$counts[,1:3], counts) groups <- as.character(design$group) plotFOV(nano)
plotBindingDensities(nano)
plotGroupBoxplot(nano, groups = groups)
Counts have been background corrected and positive control normalized
nano <- nsBackgroundCorrect(nano, bm = params$bm, sd.factor = 2) nano <- nsPositiveControlNormalization(nano, pcm = params$pcm) plotPositiveScalingFactors(nano)
nano <- nsNormalize(nano, method=params$norm.method) plotNormFactors(nano) plotGroupBoxplot(nano, groups = groups) #plotDistanceRatio(nano, groups)
plotDendrogram(nano)
pcas <- plotPCA(nano, groups=groups) pcas$p1 pcas$p2 pcas$pc3
plotHeatmapExpression(nano, groups, countCutoff = 5)
counts <- nano$counts[grepl("Endogenous", nano$counts$CodeClass),] counts <- removeAnnot(counts) no.cols <- ncol(counts) counts.log2 <- log2(counts+1) conts <- design$comparison[design$comparison != ""] meanCountCutoff = 5 mean.counts <- apply(X = counts, MARGIN = 1, FUN = mean) expressed <- mean.counts >= meanCountCutoff counts.expressed <- counts[expressed,] logcounts.expressed <- counts.log2[expressed,] logcounts.matrix <- as.matrix(logcounts.expressed) counts.matrix <- as.matrix(counts.expressed) # Linear model fitting and DE analysis G <- factor(groups) dm <- model.matrix(~ -1 + G) colnames(dm) <- levels(G) contrasts <- makeContrasts(contrasts = conts, levels = dm) fit <- lmFit(logcounts.expressed, dm) fit2 <- contrasts.fit(fit = fit, contrasts = contrasts) fit2 <- eBayes(fit2) res <- decideTests(fit2) summary(res) conts <- as.character(conts) for (cont in conts){ res <- topTable(fit2, coef=cont, number=Inf, sort.by="P") res$threshold <- as.factor(abs(res$logFC) > 1 & res$adj.P.Val < 0.05) res$comparison <- cont res$geneID <- rownames(res) vp <- volcanoPlot(dge.result = res, contrast = cont) print(vp) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.