| elo.model1 | R Documentation | 
Function to optimize k parameter in Elo Rating Method
elo.model1(par, burn_in=100, init_elo = 1000, IA_data, all_ids, p_function = "sigmoid", 
  return_likelihood = T)
| par | initial value of log(k) | 
| burn_in | burn in period for establishing initial elo scores. Defaults to 100 | 
| init_elo | Initial Elo score for all individuals. Defaults to 1000 | 
| IA_data | Data frame with Date, Winner, and Loser | 
| all_ids | list of all IDs in sample | 
| p_function | function used to calculate probability of winning.  Defaults to sinusoidal 
function, but use "pnorm" to use the  | 
| return_likelihood | Logical; if TRUE, returns log likelihood based on given par, if FALSE returns agonistic interactions table with elo scores based on given value of par | 
#for internal use
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.