To Do

We are testing the Polya-gamma linear model pg_lm()

library(pgR)
# library(MCMCpack)
library(splines)
library(tidyverse)
library(patchwork)

simulate some data

set.seed(11)
N <- 5000
J <- 10
X <- runif(N)
df <- 4
Xbs <- bs(X, df)
beta <- matrix(rnorm((J-1) * df), df, (J-1))
## make the intercepts smaller to reduce stochastic ordering effect
beta[1, ] <- beta[1, ] - seq(from = 4, to = 0, length.out = J - 1)
eta <- Xbs %*% beta 
pi <- eta_to_pi(eta)

Y <- matrix(0, N, J)

for (i in 1:N) {
    Y[i, ] <- rmultinom(1, 500, pi[i, ])
}
Y_prop     <- counts_to_proportions(Y)

Plot the simulated data

dat <- data.frame(
  y        = c(Y_prop),

  x        = X,
  species  = factor(rep(1:J, each = N)))

dat_truth <- data.frame(
  y        = c(pi),
  x        = X,
  species  = factor(rep(1:J, each = N)))

dat %>%
  group_by(species) %>%
  sample_n(pmin(nrow(Y), 500)) %>%
  ggplot(aes(y = y, x = x, group = species, color = species)) +
  geom_point(alpha = 0.2) +
  ylab("Proportion of count") +
  geom_line(data = dat_truth, aes(y = y, x = x, group = species), color = "black", lwd = 0.5) +
  facet_wrap(~ species, ncol = 4) +
  ggtitle("Simulated data")

Multinomial regression

## GGDags

## https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-ggdag.html

# install.packages("dagitty")
# install.packages("ggdag")
library(dagitty)
library(ggdag)
library(cowplot)
library(tidyverse)
library(latex2exp)

## set coordinates for dag
coords <- tibble::tribble(
  ~name,        ~x,   ~y,
  "Y",          3,    1, 
  "eta",        2,    1,
  "beta",       1,    1,
  "X",          0,    1,
  "mu_beta",    0.5,  0.75,
  "Sigma_beta", 0.5,  1.25
)


dag <- dagify(
  Y ~ eta,
  eta ~ beta,
  beta ~ X + mu_beta + Sigma_beta,
  # exposure = "X",
  outcome = "Y",
  coords = coords
)



dag_tidy <- dag %>%
  tidy_dagitty(seed = 404) %>%
  arrange(name) %>%
  mutate(type = case_when(
    name %in% c("X", "Y", "locs") ~ "data",
    name %in% c("mu_beta", "Sigma_beta") ~ "prior",
    TRUE ~ "parameter"
  ))

## manually rearrange the values
# dag %>%
#   tidy_dagitty(seed = 404) %>%
#   arrange(name)


dag_tidy %>%
  ggplot(aes(x = x, y = y, xend = xend, yend = yend, color = type)) +
  geom_dag_point() +
  geom_dag_edges() +
  geom_dag_text(
    color = "black",
    label = c(
      TeX("$\\beta"),
      TeX("$\\eta"),
      TeX("$\\mu_{\\beta}$"),
      TeX("$\\Sigma_{\\beta}$"),
      "X",
      "Y"
    )
  ) +
  theme_dag() +
  scale_color_viridis_d(begin = 0.9, end = 0.4) +
  theme(legend.position = "bottom")

Let $\mathbf{y}i = (y{i, 1}, \ldots, y_{i, J})'$ be a $J$-dimensional vector of counts where $M_i = \sum_{j=1}^J y_{ij}$ is the total count and $\boldsymbol{\pi}i = ( \pi{i, 1}, \ldots, \pi_{i, J})'$ is a vector of probabilities with $\sum_{j=1}^J \pi_{i, j} = 1$. Then, the likelihood of $\mathbf{y}_i$ is given by

\begin{align} [\mathbf{y}i | M_i, \boldsymbol{\pi}_i] & = \frac{M_i!} {\prod{j=1}^J y_{i, j}!} \pi_{i1}^{y_{i, 1}} \cdots \pi_{iJ}^{y_{i, J}} (#eq:multinomial) \end{align}

The canonical multinomial regression uses a soft-max link function where the $J$-dimensional probabilities are modeled in $\mathcal{R}^{J-1}$ with $J-1$ dimensional relative to a fixed reference category. Assigning latent variables $\boldsymbol{\eta}i = (\eta{i, 1}, \ldots, \eta_{i, J-1})'$ the softmax (multi-logit) function for $j = 1, \ldots, J-1$ is

\begin{align} \pi_{ij} = \frac{e^{\eta_{ij}}} {1 + \sum_{j=1}^{J-1} e^{\eta_{ij}}} \end{align}

where this can be interpreted in an $\mathcal{R}^{J}$ dimensional space with $\eta_{i,J} \equiv 0$. Multinomial regression assumes that given an $N \times q$-dimensional design matrix $\mathbf{X}$ for $j = 1, \ldots, J-1$, the latent parameter $\eta_{i, j} = \mathbf{X}i \boldsymbol{\beta}_j$. After assigning each $j = 1, \ldots, J-1$ a $\operatorname{N}(\boldsymbol{\mu}\beta, \boldsymbol{\Sigma}_\beta)$ prior, the posterior distribution is

\begin{align} [\boldsymbol{\beta} | \mathbf{y}] & \propto \prod_{i=1}^N [\mathbf{y}i | \boldsymbol{\beta}] \prod{j=1}^{J-1} [\boldsymbol{\beta}_j]. \end{align}

The difficulty in evaluating the above posterior is that the distribution is not available in closed form and sampling requires a Metropolis-Hastings update (or some other non-conjugate sampler). This motivates the following data augmentation scheme.

The multinomial likelihood as a product of binomial distributions.

We can re-write the multinomial distribution in \@ref(eq:multinomial) as a recursive product of $J-1$ binomial distributions

\begin{align} [\mathbf{y}i | M_i, \boldsymbol{\pi}_i] & = \operatorname{Mult} \left(M_i, \pi_i \right) \ & = \prod{j=1}^{J-1} \operatorname{Binomial} \left( y_{i,j} \middle| \widetilde{M}{i, j}, \widetilde{\pi}{i, j} \right) \ & = \prod_{j=1}^{J-1} \binom{\widetilde{M}{i, j}}{y{i, j}} \widetilde{\pi}{i, j}^{y{i, j}} (1 - \widetilde{\pi}{i, j})^{\widetilde{M}{i, j} - y_{i, j}} \end{align}

where

\begin{align} \widetilde{M}{i, j} & = \begin{cases} \widetilde{M}{i, j} & \mbox{ if } j = 1 \ \widetilde{M}{i, j} - \sum{k < j} y_{i, k} & \mbox{ if } 1 < j \leq J - 1 \end{cases} \end{align}

and the transformed (conditional) probabilities $\widetilde{\pi}_{i, j}$ recursively defined by

\begin{align} \widetilde{\pi}{i, j} & = \begin{cases} \pi{i, 1} & \mbox{ if } j = 1 \ \frac{\pi_{i, j}}{1 - \sum_{k < j} \pi_{i, k}} & \mbox{ if } 1 < j \leq J - 1 \end{cases} \end{align}

where the stick-breaking transformation $\pi_{SB} \left( \boldsymbol{\eta}_{i} \right)$ maps the $J-1$ dimensional vector $\boldsymbol{\eta}_i$ over $\mathcal{R}^{J-1}$ to the $J$-dimensional unit simplex by

\begin{align} \pi_{SB} \left( \eta_{i, j} \right) = \frac{e^{ \eta_{i, j}} }{ \prod_{k \leq j} 1 + e^{ \eta_{i, j} } }. \end{align}

Pólya-gamma data augmentation

The key idea for the Pólya-gamma data augmentation is that the multinomial likelihood can be written as

\begin{align} [\mathbf{y}i | \boldsymbol{\eta}_i] & = \prod{j=1}^{J-1} \binom{\widetilde{M}{i, j}}{y{i, j}} \widetilde{\pi}{i, j}^{y{i, j}} (1 - \widetilde{\pi}{i, j})^{\widetilde{M}{i, j} - y_{i, j}} \nonumber \ & \propto \prod_{j=1}^{J-1}\frac{ (e^{\eta_{i,j}})^{a_{i, j}} }{(1 + e^{\eta_{i,j}})^{b_{i, j}}} (#eq:likelihood) \end{align}

where $\widetilde{\pi_{i,j}} = \frac{e^{\eta_{i,j}}}{1 + e^{\eta_{i,j}}}$ for some latent variable $\eta_{i, j}$ on the real line, $a_{i, j} = y_{i, j}$, and $b_{i, j} = \widetilde{M_{i, j}}$. Then, applying the identity [@polson2013bayesian]

\begin{align} \frac{\left( e^{\eta_{i, j}} \right)^{y_{i, j}} }{ \left( 1 + e^{\eta_{i, j}} \right)^{\widetilde{M}{i, j} }} & = 2^{-\widetilde{M}{i, j}} e^{\kappa_{i, j} \eta_{i, j}} \int_0^\infty e^{- \omega_{i, j} \eta_{i, j}^2 / 2} \left[\omega_{i, j} | \widetilde{M}{i, j}, 0 \right] \,d\omega{i, j} (#eq:pg-identity) \end{align}

where $\kappa \left( y_{i, j} \right) = y_{i, j} - \widetilde{M}{i, j} / 2$. Equation \@ref(eq:pg-identity) allows for the expression of the likelihood in \@ref(eq:likelihood) as an infinite convolution over the density $\left[\omega{i, j} | \widetilde{M}{i, j}, 0 \right]$ which is the probability density function of a Pólya-gamma random variable $\operatorname{PG} \left(\widetilde{M}{i, j}, 0 \right)$ and a component $e^{- \omega_{i, j} \eta_{i, j}^2 / 2}$ which is proportional to the kernel of a Gaussian density with precision $\omega_{i, j}$. We make the assumption that for all $i$ and $j$, $\omega_{i, j} \stackrel{iid}{\sim} \operatorname{PG} \left(\widetilde{M}{i, j}, 0 \right)$ Therefore, we can express a multinomial likelihood as an infinite convolution of a Gaussian random variable with a Pólya-gamma density. After defining a prior $[\boldsymbol{\eta}] = \prod{i=1}^N \prod_{j=1}^{J-1} [\eta_{i, j} | \boldsymbol{\eta}{-i, -j}]$ where $\boldsymbol{\eta}{-i, -j}$ is all of the elements of $\boldsymbol{\eta}$ except the $ij$th element, we can write the joint distribution $[\mathbf{y}, \boldsymbol{\eta}]$ as

Work on this notation \begin{align} [\mathbf{y}, \boldsymbol{\eta}] & \propto \prod_{i=1}^N \prod_{j=1}^{J-1}\frac{ (e^{\eta_{i,j}})^{y_{i, j}} }{(1 + e^{\eta_{i,j}})^{\widetilde{M}{i, j}}} [\boldsymbol{\eta}] \nonumber \ & \propto \prod{i=1}^N \prod_{j=1}^{J-1} 2^{-\widetilde{M}{i, j}} e^{\kappa(y{i, j}) \eta_{i, j}} \int_0^\infty e^{- \omega_{i, j} \eta_{i, j}^2 / 2} \left[\omega_{i, j} | \widetilde{M}{i, j}, 0 \right] \,d\omega{i, j} [\boldsymbol{\eta}] \nonumber \ & \propto \prod_{i=1}^N \prod_{j=1}^{J-1} \int_0^\infty [\eta_{i, j} | \boldsymbol{\eta}{-i,-j}] 2^{-\widetilde{M}{i, j}} e^{\kappa(y_{i, j}) \eta_{i, j}} e^{- \omega_{i, j} \eta_{i, j}^2 / 2} \left[\omega_{i, j} | \widetilde{M}{i, j}, 0 \right] \,d\omega{i, j} \nonumber \ & \propto \prod_{i=1}^N \prod_{j=1}^{J-1} \int_0^\infty [\mathbf{y}, \eta_{i, j}, \omega_{i, j} | \boldsymbol{\eta}{i, j}] \,d\omega{i, j} \nonumber \ & \propto \int_0^\infty [\mathbf{y}, \boldsymbol{\eta}, \boldsymbol{\omega}] \,d\boldsymbol{\omega} (#eq:da) \end{align}

where $[\mathbf{y}, \boldsymbol{\eta}, \boldsymbol{\omega}]$ is a joint density over the data augmented likelihood. When the prior on $\boldsymbol{\eta}$ is Gaussian, the marginal density $[\boldsymbol{\eta} | \mathbf{y}, \boldsymbol{\omega}] \propto \prod_{i=1}^N \prod_{j=1}^{J-1} e^{\kappa(y_{i, j}) \eta_{i, j}} e^{- \omega_{i, j} \eta_{i, j}^2 / 2} [\boldsymbol{\eta}]$ induced by the integrand in \@ref(eq:da) is also Gaussian. In addition, the exponential tilting property of the Pólya-gamma distribution [@polson2013bayesian] gives the conditional distribtuion

\begin{align} [\omega_{i, j} | \mathbf{y}, \boldsymbol{\eta}] & \sim \operatorname{PG}(\widetilde{M}{i, j}, \eta{i, j}) \end{align}

Pólya-gamma regression

To perform regression on the multinomial vector given an $N \times q$ design matrix $\mathbf{X}$, we assume that $\eta_{i j} = \mathbf{X}i \boldsymbol{\beta}_j$ and $\boldsymbol{\beta}_j \sim \operatorname{N}(\boldsymbol{\mu}\beta, \boldsymbol{\Sigma}_\beta)$.

Defining $\boldsymbol{\Omega}i = \operatorname{diag}(\omega{i, 1}, \ldots, \omega_{i, J-1})$, we can calculate the full conditional distributions.

Full Conditionals

Full Conditional for $\boldsymbol{\beta}_{j}$

\begin{align} \boldsymbol{\beta}{j} | \mathbf{y}, \boldsymbol{\omega} & \propto \prod{i=1}^N \operatorname{N} \left( \boldsymbol{\beta}{j} | \boldsymbol{\Omega}_i^{-1} \kappa \left( \mathbf{y}{i} \right), \boldsymbol{\Omega}j^{-1} \right) \operatorname{N} \left( \boldsymbol{\beta}{\cdot, j} | \boldsymbol{\mu}{\beta_j}, \boldsymbol{\Sigma}{\beta_j} \right) \ & \propto \operatorname{N} \left( \boldsymbol{\beta}_{\cdot, j} | \tilde{\boldsymbol{\mu}}_j, \tilde{\boldsymbol{\Sigma}}_j \right) \end{align}

where

\begin{align} \tilde{\boldsymbol{\mu}}j & = \tilde{\boldsymbol{\Sigma}}_j \left( {\boldsymbol{\Sigma}{\beta}}^{-1} \boldsymbol{\mu}\beta + \sum{i=1}^N \mathbf{x}i' \kappa \left( \mathbf{y}{i, j} \right) \right), \mbox{ and }\ \tilde{\boldsymbol{\Sigma}}j & = \left( {\boldsymbol{\Sigma}{\beta}}^{-1} + \sum_{i=1}^N \mathbf{x}i' \omega{i, j} \mathbf{x}_i \right)^{-1} \end{align}

where $\mathbf{x}_i$ is the $i$th row of $\mathbf{X}$.

Full Conditional for $\omega_{i, j}$

If $\widetilde{M}{i, j} = 0$, then $\omega{i, j} | \mathbf{y}, \boldsymbol{\beta} \equiv 0$. Otherwise, for $\widetilde{M}_{i, j} > 0$, we have

\begin{align} \omega_{i, j} | \mathbf{y}, \boldsymbol{\beta} & \propto \frac{e^{- \frac{1}{2} \omega_{i, j} \mathbf{x}i' \boldsymbol{\beta}_j}[\omega{i, j}]}{\int_{0}^{\infty} e^{- \frac{1}{2} \omega_{i, j} \mathbf{x}i' \boldsymbol{\beta}_j}[\omega{i, j}] \,d\omega_{i, j}} %\operatorname{N} \left( \mathbf{y}{i} | \boldsymbol{\Omega}_i^{-1} \kappa \left( \mathbf{y}{i} \right), \boldsymbol{\Omega}i^{-1} \right) \operatorname{N} \left( \boldsymbol{\beta}{\cdot, j} | \boldsymbol{\mu}{\beta_j}, \boldsymbol{\Sigma}{\beta_j} \right) \ \end{align}

which is $\operatorname{PG} \left( \widetilde{M}{i, j}, \eta{i, j} \equiv \mathbf{x}_i' \boldsymbol{\beta}_j\right)$ by the exponential tilting property of the Pólya-gamma distribution.

## fit the model to verify parameters
params <- default_params() 
params$n_adapt <- 500
params$n_mcmc <- 1000
params$n_message <- 50
params$n_thin <- 1
priors <- default_priors_pg_lm(Y, Xbs)
inits <- default_inits_pg_lm(Y, Xbs, priors)
if (file.exists(here::here("results", "pg_lm.RData"))) {
    load(here::here("results", "pg_lm.RData"))
} else {
    start <- Sys.time()
    out <- pg_lm(Y, as.matrix(Xbs), params, priors, n_cores = 1L)
    stop <- Sys.time()
    runtime <- stop - start

    save(out, runtime, file = here::here("results", "pg_lm.RData"))
}
layout(matrix(1:9, 3, 3))
for (i in 1:9) {
  matplot(out$beta[, , i], type = 'l', main = paste("species", i))
  abline(h = beta[, i], col = 1:nrow(beta))
}
runtime

## plot beta estimates
dat_plot <- data.frame(
    beta = c(
        c(apply(out$beta, c(2, 3), mean)), 
        c(beta)
    ),
    type = rep(c("estimate", "truth"), each = (J-1) * ncol(Xbs)),
    species = factor(rep(1:(J-1), each = ncol(Xbs))),
    knots = 1:ncol(Xbs)
)

dat_plot %>%
    pivot_wider(names_from = type, values_from = beta) %>%
    ggplot(aes(x = estimate, y = truth, color = species)) +
    scale_color_viridis_d(begin = 0, end = 0.8) +
    geom_point(alpha = 0.5) +
    facet_wrap(~ species, nrow = 8) +
    geom_abline(intercept = 0, slope = 1, col = "red")
## fit the model with a linear response only
params <- default_params() 
params$n_adapt <- 500
params$n_mcmc <- 1000
params$n_message <- 50
params$n_thin <- 1
priors <- default_priors_pg_lm(Y, as.matrix(X))
inits <- default_inits_pg_lm(Y, as.matrix(X), priors)
if (file.exists(here::here("results", "pg_lm-linear.RData"))) {
    load(here::here("results", "pg_lm-linear.RData"))
} else {
    start <- Sys.time()
    out_linear <- pg_lm(Y, as.matrix(X), params, priors, n_cores = 1L, sample_rmvn = FALSE)
    stop <- Sys.time()
    runtime_linear <- stop - start

    save(out_linear, runtime_linear, file = here::here("results", "pg_lm-linear.RData"))
}
# model fit using loo
ll_bs <- calc_ll_pg_lm(Y, Xbs, out)
# fit model using linear response
ll_linear <- calc_ll_pg_lm(Y, as.matrix(X), out_linear)

library(loo)
loo_bs <- loo(t(ll_bs$ll), cores = 32L)
loo_linear <- loo(t(ll_linear$ll), cores = 32L)
comp <- loo_compare(loo_bs, loo_linear)
print(comp)
plot(loo_bs)
plot(loo_linear)

prediction code testing

set.seed(44)
## subsample the simulated data
n <- 2000
s <- sample(N, n)
Y_s     <- Y[s, ]
Y_oos   <- Y[-s, ]
Xbs_s   <- Xbs[s, ]
Xbs_oos <- Xbs[-s, ]
eta_s   <- eta[s, ]
eta_oos <- eta[-s, ]
pi_s    <- pi[s, ]
pi_oos  <- pi[-s, ]

## fit the model to verify parameters
params <- default_params()
params$n_adapt <- 500
params$n_mcmc <- 1000
params$n_message <- 50
params$n_thin <- 1
priors <- default_priors_pg_lm(Y_s, Xbs_s)
inits <- default_inits_pg_lm(Y_s, Xbs_s, priors)
if (file.exists(here::here("results", "pg_lm-sample.RData"))) {
    load(here::here("results", "pg_lm-sample.RData"))
} else {
    ## need to parallelize the polya-gamma random variables
    ## can I do this efficiently using openMP?
    ## Q: faster to parallelize using openMP or foreach?
    start <- Sys.time()
    out <- pg_lm(Y_s, as.matrix(Xbs_s), params, priors, n_cores = 1L, sample_rmvn = FALSE)
    stop <- Sys.time()
    runtime <- stop - start

    save(out, runtime, file = here::here("results", "pg_lm-sample.RData"))
}
layout(matrix(1:9, 3, 3))
for (i in 1:9) {
  matplot(out$beta[, , i], type = 'l', main = paste("species", i))
  abline(h = beta[, i])
}
runtime

## plot beta estimates
dat_plot <- data.frame(
    beta = c(
        c(apply(out$beta, c(2, 3), mean)), 
        c(beta)
    ),
    type = rep(c("estimate", "truth"), each = (J-1) * ncol(Xbs)),
    species = factor(rep(1:(J-1), each = ncol(Xbs))),
    knots = 1:ncol(Xbs)
)

dat_plot %>%
    pivot_wider(names_from = type, values_from = beta) %>%
    ggplot(aes(x = estimate, y = truth, color = species)) +
    scale_color_viridis_d(begin = 0, end = 0.8) +
    geom_point(alpha = 0.5) +
    facet_wrap(~ species, nrow = 8) +
    geom_abline(intercept = 0, slope = 1, col = "red")
## predict from the model
preds <- predict_pg_lm(out, Xbs_oos)
pi_pred_mean <- apply(preds$pi, c(2, 3), mean)
dat_pi_pred <- data.frame(
  pi   = c(
    c(pi_oos),
    c(pi_pred_mean)
  ),
  type = rep(c("observed", "predicted"), each = J * (N-n)),
  species = factor(rep(1:J, each = (N-n))),
  obs     = 1:(N-n) 
)

p_pi_pred <- dat_pi_pred %>%
  pivot_wider(names_from = type, values_from = pi) %>%
  ggplot(aes(x = observed, y = predicted, color = species)) +
  scale_color_viridis_d(begin = 0, end = 0.8) +
  geom_point(alpha = 0.5) +
  facet_wrap(~ species, nrow = 5) +
  geom_abline(intercept = 0, slope = 1, col = "red") +
  ggtitle("Predicted vs simulated latent probability pi")


eta_pred_mean <- apply(preds$eta, c(2, 3), mean)
dat_eta_pred <- data.frame(
  eta   = c(
    c(eta_oos),
    c(eta_pred_mean)
  ),
  type = rep(c("observed", "predicted"), each = (J-1) * (N-n)),
  species = factor(rep(1:(J-1), each = (N-n))),
  obs     = 1:(N-n) 
)

p_eta_pred <- dat_eta_pred %>%
  pivot_wider(names_from = type, values_from = eta) %>%
  ggplot(aes(x = observed, y = predicted, color = species)) +
  scale_color_viridis_d(begin = 0, end = 0.8) +
  geom_point(alpha = 0.5) +
  facet_wrap(~ species, nrow = 5) +
  geom_abline(intercept = 0, slope = 1, col = "red") +
  ggtitle("Predicted vs simulated latent intensity eta")
p_pi_pred + p_eta_pred

verifying openMP timings

params <- default_params()
params$n_adapt <- 100
params$n_mcmc <- 100
params$n_message <- 50
params$n_thin <- 1
priors <- default_priors_pg_lm(Y, Xbs)
inits <- default_inits_pg_lm(Y, Xbs, priors)
# check_inits_pg_lm(Y, Xbs, params, inits)

if (file.exists(here::here("results", "timings-pg_lm.RData"))) {
    load(here::here("results", "timings-pg_lm.RData"))
} else {
  ## need to parallelize the polya-gamma random variables
  ## can I do this efficiently using openMP?
  ## Q: faster to parallelize using openMP or foreach?

  time_8 <- system.time(
    out <- pg_lm(Y, as.matrix(Xbs), params, priors, n_cores = 8L, sample_rmvn = FALSE)
  )
  time_6 <- system.time(
    out <- pg_lm(Y, as.matrix(Xbs), params, priors, n_cores = 6L, sample_rmvn = FALSE)
  )
  time_4 <- system.time(
    out <- pg_lm(Y, as.matrix(Xbs), params, priors, n_cores = 4L, sample_rmvn = FALSE)
  )
  time_2 <- system.time(
    out <- pg_lm(Y, as.matrix(Xbs), params, priors, n_cores = 2L, sample_rmvn = FALSE)
  )
  time_1 <- system.time(
    out <- pg_lm(Y, as.matrix(Xbs), params, priors, n_cores = 1L, sample_rmvn = FALSE)
  )
  save(time_1, time_2, time_4, time_6, time_8, file = here::here("results", "timings-pg_lm.RData"))
}

## Note: a large amount of computation time is not parallel -- sampling of the beta variable
## need to figure out why the faster comptuation version is giving issues
knitr::kable(
    rbind(
        time_1,
        time_2,
        time_4,
        time_6,
        time_8
    )
)

code profiling

## not run -- diagnostic profiling
params$n_adapt <- 50
params$n_mcmc <- 50
profvis::profvis(pg_lm_cores(Y, as.matrix(Xbs), params, priors, cores = 1L))
profvis::profvis(pg_lm(Y, as.matrix(Xbs), params, priors, cores = 8L))


jtipton25/pgR documentation built on July 8, 2022, 12:44 a.m.