We are testing the spatial Polya-gamma linear model pg_splm()
knitr::opts_chunk$set(fig.width = 16, fig.height = 9) library(pgR) library(mvnfast) # library(MCMCpack) library(splines) library(tidyverse) library(patchwork) library(BayesMRA) library(spam)
set.seed(11) N <- 30^2 J <- 6 M <- 3 p <- 2 ## setup the spatial process locs <- as.matrix( expand.grid( seq(0, 1, length = sqrt(N)), seq(0, 1, length = sqrt(N)) ) ) ## generate the MRA basis MRA <- mra_wendland_2d(locs, M = M, n_coarse_grid = 8) W <- MRA$W ## generate the MRA spatially-correlated random effects precision matrix tau2 <- sapply(1:(J-1), function(j) 100 * 2^(1:M) * rgamma(M, 1, 1)) Q_alpha <- make_Q_alpha_2d(sqrt(MRA$n_dims), rep(0.999, length(MRA$n_dims))) Q_alpha_tau2 <- vector(mode = "list", length = J-1) for (j in 1:(J-1)) { Q_alpha_tau2[[j]] <- make_Q_alpha_tau2(Q_alpha, tau2[, j]) } ## define the sum-to-0 constraint for alpha constraints <- make_constraint(MRA, constraint = "resolution", joint = TRUE) A_constraint <- constraints$A_constraint a_constraint <- constraints$a_constraint ## simulate the spatial random effects alpha <- matrix(0, sum(MRA$n_dims), J-1) for (j in 1:(J-1)) { alpha[, j] <- rmvnorm.prec.const(n = 1, mu = rep(0, sum(MRA$n_dims)), Q = Q_alpha_tau2[[j]]) } W_alpha <- W %*% alpha ## setup the fixed effects process X <- cbind(1, matrix(runif(N*p), N, p)) beta <- matrix(rnorm((J-1) * ncol(X), 0, 0.25), ncol(X), (J-1)) ## make the intercepts smaller to reduce stochastic ordering effect beta[1, ] <- beta[1, ] - seq(from = 2, to = 0, length.out = J-1) ## add in some residual error sigma2 <- rgamma(J-1, 1, 5) eta <- X %*% beta + W_alpha + sapply(1:(J-1), function(j) rnorm(N, 0, sqrt(sigma2[j]))) pi <- eta_to_pi(eta) Y <- matrix(0, N, J) for (i in 1:N) { Y[i, ] <- rmultinom(1, 500, pi[i, ]) } Y_prop <- counts_to_proportions(Y)
## put data into data.frame for plotting dat <- data.frame( Y = c(Y_prop), lon = locs[, 1], lat = locs[, 2], species = factor(rep(1:J, each = N)), pi = c(pi) ) p_simulated <- ggplot(data = dat, aes(x = lon, y = lat, fill = pi)) + geom_raster() + scale_fill_viridis_c() + facet_wrap(~ species) + ggtitle("Simulated data") + theme(legend.position = "none") p_simulated
Below is a DAG for the model
## GGDags ## https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-ggdag.html # install.packages("dagitty") # install.packages("ggdag") library(dagitty) library(ggdag) library(cowplot) library(tidyverse) library(latex2exp) ## set coordinates for dag coords <- tibble::tribble( ~name, ~x, ~y, "Y", 3, 1, "eta", 2, 1, "locs", 2.5, 1.25, "tau2", 1.5, 0.75, "theta", 1.5, 1.25, "beta", 1, 1, "X", 0, 1, "mu_beta", 0.5, 0.75, "Sigma_beta", 0.5, 1.25 ) dag <- dagify( Y ~ eta, eta ~ beta + locs + theta + tau2, beta ~ X + mu_beta + Sigma_beta, # exposure = "X", outcome = "Y", coords = coords ) dag_tidy <- dag %>% tidy_dagitty(seed = 404) %>% arrange(name) %>% mutate(type = case_when( name %in% c("X", "Y", "locs") ~ "data", name %in% c("tau2", "theta") ~ "hyperparameter", name %in% c("mu_beta", "Sigma_beta") ~ "prior", TRUE ~ "parameter" )) ## manually rearrange the values # dag %>% # tidy_dagitty(seed = 404) %>% # arrange(name) dag_tidy %>% ggplot(aes(x = x, y = y, xend = xend, yend = yend, color = type)) + geom_dag_point() + geom_dag_edges() + geom_dag_text( color = "black", label = c( TeX("$\\beta"), TeX("$\\eta"), "lat/lon", TeX("$\\mu_{\\beta}$"), TeX("$\\Sigma_{\\beta}$"), TeX("$\\tau^2"), TeX("$\\theta$"), "X", "Y" ) ) + theme_dag() + scale_color_viridis_d(begin = 0.9, end = 0.4) + theme(legend.position = "bottom")
Let $\mathbf{y}i = (y{i, 1}, \ldots, y_{i, J})'$ be a $J$-dimensional vector of counts where $M_i = \sum_{j=1}^J y_{ij}$ is the total count and $\boldsymbol{\pi}i = ( \pi{i, 1}, \ldots, \pi_{i, J})'$ is a vector of probabilities with $\sum_{j=1}^J \pi_{i, j} = 1$. Then, the likelihood of $\mathbf{y}_i$ is given by
\begin{align} [\mathbf{y}i | M_i, \boldsymbol{\pi}_i] & = \frac{M_i!} {\prod{j=1}^J y_{i, j}!} \pi_{i1}^{y_{i, 1}} \cdots \pi_{iJ}^{y_{i, J}} (#eq:multinomial) \end{align}
The canonical multinomial regression uses a soft-max link function where the $J$-dimensional probabilities are modeled in $\mathcal{R}^{J-1}$ with $J-1$ dimensional relative to a fixed reference category. Assigning latent variables $\boldsymbol{\eta}i = (\eta{i, 1}, \ldots, \eta_{i, J-1})'$ the softmax (multi-logit) function for $j = 1, \ldots, J-1$ is
\begin{align} \pi_{ij} = \frac{e^{\eta_{ij}}} {1 + \sum_{j=1}^{J-1} e^{\eta_{ij}}} \end{align}
where this can be interpreted in an $\mathcal{R}^{J}$ dimensional space with $\eta_{i,J} \equiv 0$. Multinomial regression assumes that given an $N \times q$-dimensional design matrix $\mathbf{X}$ for $j = 1, \ldots, J-1$, the latent parameter $\eta_{i, j} = \mathbf{X}i \boldsymbol{\beta}_j$. After assigning each $j = 1, \ldots, J-1$ a $\operatorname{N}(\boldsymbol{\mu}\beta, \boldsymbol{\Sigma}_\beta)$ prior, the posterior distribution is
\begin{align} [\boldsymbol{\beta} | \mathbf{y}] & \propto \prod_{i=1}^N [\mathbf{y}i | \boldsymbol{\beta}] \prod{j=1}^{J-1} [\boldsymbol{\beta}_j]. \end{align}
The difficulty in evaluating the above posterior is that the distribution is not available in closed form and sampling requires a Metropolis-Hastings update (or some other non-conjugate sampler). This motivates the following data augmentation scheme.
We can re-write the multinomial distribution in \@ref(eq:multinomial) as a recursive product of $J-1$ binomial distributions
\begin{align} [\mathbf{y}i | M_i, \boldsymbol{\pi}_i] & = \operatorname{Mult} \left(M_i, \pi_i \right) \ & = \prod{j=1}^{J-1} \operatorname{Binomial} \left( y_{i,j} \middle| \widetilde{M}{i, j}, \widetilde{\pi}{i, j} \right) \ & = \prod_{j=1}^{J-1} \binom{\widetilde{M}{i, j}}{y{i, j}} \widetilde{\pi}{i, j}^{y{i, j}} (1 - \widetilde{\pi}{i, j})^{\widetilde{M}{i, j} - y_{i, j}} \end{align}
where
\begin{align} \widetilde{M}{i, j} & = \begin{cases} \widetilde{M}{i, j} & \mbox{ if } j = 1 \ \widetilde{M}{i, j} - \sum{k < j} y_{i, k} & \mbox{ if } 1 < j \leq J - 1 \end{cases} \end{align}
and the transformed (conditional) probabilities $\widetilde{\pi}_{i, j}$ recursively defined by
\begin{align} \widetilde{\pi}{i, j} & = \begin{cases} \pi{i, 1} & \mbox{ if } j = 1 \ \frac{\pi_{i, j}}{1 - \sum_{k < j} \pi_{i, k}} & \mbox{ if } 1 < j \leq J - 1 \end{cases} \end{align}
where the stick-breaking transformation $\pi_{SB} \left( \boldsymbol{\eta}_{i} \right)$ maps the $J-1$ dimensional vector $\boldsymbol{\eta}_i$ over $\mathcal{R}^{J-1}$ to the $J$-dimensional unit simplex by
\begin{align} \pi_{SB} \left( \eta_{i, j} \right) = \frac{e^{ \eta_{i, j}} }{ \prod_{k \leq j} 1 + e^{ \eta_{i, j} } }. \end{align}
The key idea for the Pólya-gamma data augmentation is that the multinomial likelihood can be written as
\begin{align} [\mathbf{y}i | \boldsymbol{\eta}_i] & = \prod{j=1}^{J-1} \binom{\widetilde{M}{i, j}}{y{i, j}} \widetilde{\pi}{i, j}^{y{i, j}} (1 - \widetilde{\pi}{i, j})^{\widetilde{M}{i, j} - y_{i, j}} \nonumber \ & \propto \prod_{j=1}^{J-1}\frac{ (e^{\eta_{i,j}})^{a_{i, j}} }{(1 + e^{\eta_{i,j}})^{b_{i, j}}} (#eq:likelihood) \end{align}
where $\widetilde{\pi_{i,j}} = \frac{e^{\eta_{i,j}}}{1 + e^{\eta_{i,j}}}$ for some latent variable $\eta_{i, j}$ on the real line, $a_{i, j} = y_{i, j}$, and $b_{i, j} = \widetilde{M_{i, j}}$. Then, applying the identity [@polson2013bayesian]
\begin{align} \frac{\left( e^{\eta_{i, j}} \right)^{y_{i, j}} }{ \left( 1 + e^{\eta_{i, j}} \right)^{\widetilde{M}{i, j} }} & = 2^{-\widetilde{M}{i, j}} e^{\kappa_{i, j} \eta_{i, j}} \int_0^\infty e^{- \omega_{i, j} \eta_{i, j}^2 / 2} \left[\omega_{i, j} | \widetilde{M}{i, j}, 0 \right] \,d\omega{i, j} (#eq:pg-identity) \end{align}
where $\kappa \left( y_{i, j} \right) = y_{i, j} - \widetilde{M}{i, j} / 2$. Equation \@ref(eq:pg-identity) allows for the expression of the likelihood in \@ref(eq:likelihood) as an infinite convolution over the density $\left[\omega{i, j} | \widetilde{M}{i, j}, 0 \right]$ which is the probability density function of a Pólya-gamma random variable $\operatorname{PG} \left(\widetilde{M}{i, j}, 0 \right)$ and a component $e^{- \omega_{i, j} \eta_{i, j}^2 / 2}$ which is proportional to the kernel of a Gaussian density with precision $\omega_{i, j}$. We make the assumption that for all $i$ and $j$, $\omega_{i, j} \stackrel{iid}{\sim} \operatorname{PG} \left(\widetilde{M}{i, j}, 0 \right)$ Therefore, we can express a multinomial likelihood as an infinite convolution of a Gaussian random variable with a Pólya-gamma density. After defining a prior $[\boldsymbol{\eta}] = \prod{i=1}^N \prod_{j=1}^{J-1} [\eta_{i, j} | \boldsymbol{\eta}{-i, -j}]$ where $\boldsymbol{\eta}{-i, -j}$ is all of the elements of $\boldsymbol{\eta}$ except the $ij$th element, we can write the joint distribution $[\mathbf{y}, \boldsymbol{\eta}]$ as
Work on this notation \begin{align} [\mathbf{y}, \boldsymbol{\eta}] & \propto \prod_{i=1}^N \prod_{j=1}^{J-1}\frac{ (e^{\eta_{i,j}})^{y_{i, j}} }{(1 + e^{\eta_{i,j}})^{\widetilde{M}{i, j}}} [\boldsymbol{\eta}] \nonumber \ & \propto \prod{i=1}^N \prod_{j=1}^{J-1} 2^{-\widetilde{M}{i, j}} e^{\kappa(y{i, j}) \eta_{i, j}} \int_0^\infty e^{- \omega_{i, j} \eta_{i, j}^2 / 2} \left[\omega_{i, j} | \widetilde{M}{i, j}, 0 \right] \,d\omega{i, j} [\boldsymbol{\eta}] \nonumber \ & \propto \prod_{i=1}^N \prod_{j=1}^{J-1} \int_0^\infty [\eta_{i, j} | \boldsymbol{\eta}{-i,-j}] 2^{-\widetilde{M}{i, j}} e^{\kappa(y_{i, j}) \eta_{i, j}} e^{- \omega_{i, j} \eta_{i, j}^2 / 2} \left[\omega_{i, j} | \widetilde{M}{i, j}, 0 \right] \,d\omega{i, j} \nonumber \ & \propto \prod_{i=1}^N \prod_{j=1}^{J-1} \int_0^\infty [\mathbf{y}, \eta_{i, j}, \omega_{i, j} | \boldsymbol{\eta}{i, j}] \,d\omega{i, j} \nonumber \ & \propto \int_0^\infty [\mathbf{y}, \boldsymbol{\eta}, \boldsymbol{\omega}] \,d\boldsymbol{\omega} (#eq:da) \end{align}
where $[\mathbf{y}, \boldsymbol{\eta}, \boldsymbol{\omega}]$ is a joint density over the data augmented likelihood. When the prior on $\boldsymbol{\eta}$ is Gaussian, the marginal density $[\boldsymbol{\eta} | \mathbf{y}, \boldsymbol{\omega}] \propto \prod_{i=1}^N \prod_{j=1}^{J-1} e^{\kappa(y_{i, j}) \eta_{i, j}} e^{- \omega_{i, j} \eta_{i, j}^2 / 2} [\boldsymbol{\eta}]$ induced by the integrand in \@ref(eq:da) is also Gaussian. In addition, the exponential tilting property of the Pólya-gamma distribution [@polson2013bayesian] gives the conditional distribution
\begin{align} [\omega_{i, j} | \mathbf{y}, \boldsymbol{\eta}] & \sim \operatorname{PG}(\widetilde{M}{i, j}, \eta{i, j}) \end{align}
To perform regression on the multinomial vector given an $N \times q$ design matrix $\mathbf{X}$, we assume that $\eta_{i j} = \mathbf{X}i \boldsymbol{\beta}_j$ and $\boldsymbol{\beta}_j \sim \operatorname{N}(\boldsymbol{\mu}\beta, \boldsymbol{\Sigma}_\beta)$.
Defining $\boldsymbol{\Omega}i = \operatorname{diag}(\omega{i, 1}, \ldots, \omega_{i, J-1})$, we can calculate the full conditional distributions.
\begin{align} \boldsymbol{\beta}{j} | \mathbf{y}, \boldsymbol{\omega} & \propto \prod{i=1}^N \operatorname{N} \left( \boldsymbol{\beta}{j} | \boldsymbol{\Omega}_i^{-1} \kappa \left( \mathbf{y}{i} \right), \boldsymbol{\Omega}j^{-1} \right) \operatorname{N} \left( \boldsymbol{\beta}{\cdot, j} | \boldsymbol{\mu}{\beta_j}, \boldsymbol{\Sigma}{\beta_j} \right) \ & \propto \operatorname{N} \left( \boldsymbol{\beta}_{\cdot, j} | \tilde{\boldsymbol{\mu}}_j, \tilde{\boldsymbol{\Sigma}}_j \right) \end{align}
where
\begin{align} \tilde{\boldsymbol{\mu}}j & = \tilde{\boldsymbol{\Sigma}}_j \left( {\boldsymbol{\Sigma}{\beta}}^{-1} \boldsymbol{\mu}\beta + \sum{i=1}^N \mathbf{x}i' \kappa \left( \mathbf{y}{i, j} \right) \right), \mbox{ and }\ \tilde{\boldsymbol{\Sigma}}j & = \left( {\boldsymbol{\Sigma}{\beta}}^{-1} + \sum_{i=1}^N \mathbf{x}i' \omega{i, j} \mathbf{x}_i \right)^{-1} \end{align}
where $\mathbf{x}_i$ is the $i$th row of $\mathbf{X}$.
If $\widetilde{M}{i, j} = 0$, then $\omega{i, j} | \mathbf{y}, \boldsymbol{\beta} \equiv 0$. Otherwise, for $\widetilde{M}_{i, j} > 0$, we have
\begin{align} \omega_{i, j} | \mathbf{y}, \boldsymbol{\beta} & \propto \frac{e^{- \frac{1}{2} \omega_{i, j} \mathbf{x}i' \boldsymbol{\beta}_j}[\omega{i, j}]}{\int_{0}^{\infty} e^{- \frac{1}{2} \omega_{i, j} \mathbf{x}i' \boldsymbol{\beta}_j}[\omega{i, j}] \,d\omega_{i, j}} %\operatorname{N} \left( \mathbf{y}{i} | \boldsymbol{\Omega}_i^{-1} \kappa \left( \mathbf{y}{i} \right), \boldsymbol{\Omega}i^{-1} \right) \operatorname{N} \left( \boldsymbol{\beta}{\cdot, j} | \boldsymbol{\mu}{\beta_j}, \boldsymbol{\Sigma}{\beta_j} \right) \ \end{align}
which is $\operatorname{PG} \left( \widetilde{M}{i, j}, \eta{i, j} \equiv \mathbf{x}_i' \boldsymbol{\beta}_j\right)$ by the exponential tilting property of the Pólya-gamma distribution.
params <- default_params() params$n_adapt <- 500 params$n_mcmc <- 500 params$n_message <- 50 params$n_thin <- 1 priors <- default_priors_pg_splm(Y, X) inits <- default_inits_pg_splm(Y, X, priors, shared_covariance_params = TRUE) if (file.exists(here::here("results", "pg_splm-mra.RData"))) { load(here::here("results", "pg_splm-mra.RData")) } else { ## need to parallelize the polya-gamma random variables ## can I do this efficiently using openMP? ## Q: faster to parallelize using openMP or foreach? start <- Sys.time() out <- pg_splm_mra(Y, as.matrix(X), as.matrix(locs), params, priors, M = 3, n_coarse_grid = 6, n_cores = 1L) stop <- Sys.time() runtime <- stop - start save(out, runtime, file = here::here("results", "pg_splm-mra.RData")) }
layout(matrix(1:6, 3, 2)) for (i in 1:5) { matplot(out$beta[, , i], type = 'l', main = paste("species", i)) abline(h = beta[, i], col = 1:nrow(beta)) } plot(apply(out$beta, c(2, 3), mean), beta) abline(0, 1, col = "red") abline(0, 1, col = "red") dimnames(beta) <- list( parameter = paste0("beta[", 1:dim(betas)[2], "]"), species = paste0("species[", 1:dim(betas)[3], "]") ) betas <- out$beta dimnames(betas) <- list( iteration = 1:dim(betas)[1], parameter = paste0("beta[", 1:dim(betas)[2], "]"), species = paste0("species[", 1:dim(betas)[3], "]") ) as.data.frame.table(betas, responseName = "value") %>% ggplot(aes(x = parameter, y = value)) + geom_boxplot() + facet_wrap(~ species, nrow = 5) + geom_point(data = as.data.frame.table(betas, responseName = "value"), color = "red")
layout(matrix(1:6, 3, 2)) plot_idx <- sample(1:N, 20) for (i in 1:5) { matplot(out$eta[, plot_idx, i], type = 'l', main = paste("species", i)) abline(h = eta[plot_idx, i], col = 1:20) } ## typically, tau2 is not identifiable plot(apply(out$tau2, c(2, 3), mean), tau2) abline(0, 1, col = "red")
## plot beta estimates dat_plot <- data.frame( beta = c( c(apply(out$beta, c(2, 3), mean)), c(beta) ), type = rep(c("estimate", "truth"), each = (J-1) * ncol(X)), species = factor(rep(1:(J-1), each = ncol(X))), variable = 1:ncol(X) ) p1 <- dat_plot %>% pivot_wider(names_from = type, values_from = beta) %>% ggplot(aes(x = estimate, y = truth)) + # scale_color_viridis_d(begin = 0, end = 0.8) + geom_point(alpha = 0.5) + facet_wrap(~ species, nrow = 8) + geom_abline(intercept = 0, slope = 1, col = "red") + ggtitle("Estimated vs. simulated beta") ## plot eeta estimates dat_plot <- data.frame( eta = c( c(apply(out$eta, c(2, 3), mean)), c(eta) ), type = rep(c("estimate", "truth"), each = (J-1) * N), species = factor(rep(1:(J-1), each = N)), observations = 1:N ) p2 <- dat_plot %>% pivot_wider(names_from = type, values_from = eta) %>% ggplot(aes(x = estimate, y = truth)) + # scale_color_viridis_d(begin = 0, end = 0.8) + geom_point(alpha = 0.5) + facet_wrap(~ species, nrow = 8) + geom_abline(intercept = 0, slope = 1, col = "red") + ggtitle("Estimated vs. simulated eta") p1 + p2
set.seed(111) n <- 400 s <- sample(N, n) Y_s <- Y[s, ] Y_oos <- Y[-s, ] X_s <- X[s, ] X_oos <- X[-s, ] eta_s <- eta[s, ] eta_oos <- eta[-s, ] pi_s <- pi[s, ] pi_oos <- pi[-s, ] locs_s <- locs[s, ] locs_oos <- locs[-s, ] Y_prop_s <- Y_prop[s, ] Y_prop_oos <- Y_prop[-s, ] ## put data into data.frame for plotting dat <- data.frame( Y = c(Y_prop_s), lon = c(locs_s[, 1]), lat = c(locs_s[, 2]), species = factor(rep(1:J, each = n)), pi = c(pi_s) ) p_observed <- ggplot(data = dat, aes(x = lon, y = lat, fill = pi)) + geom_raster() + scale_fill_viridis_c() + facet_wrap(~ species) + ggtitle("Sampled simulated probabilities") + theme(legend.position = "none") p_observed
params <- default_params() params$n_adapt <- 500 params$n_mcmc <- 500 params$n_message <- 50 params$n_thin <- 1 priors <- default_priors_pg_splm(Y_s, X_s) if (file.exists(here::here("results", "pg_splm-mra-sample.RData"))) { load(here::here("results", "pg_splm-mra-sample.RData")) } else { ## need to parallelize the polya-gamma random variables ## can I do this efficiently using openMP? ## Q: faster to parallelize using openMP or foreach? start <- Sys.time() out <- pg_splm_mra(Y_s, as.matrix(X_s), as.matrix(locs_s), params, priors, M = 3, n_coarse_grid = 6, n_cores = 1L) stop <- Sys.time() runtime <- stop - start save(out, runtime, file = here::here("results", "pg_splm-mra-sample.RData")) }
layout(matrix(1:6, 3, 2)) for (i in 1:5) { matplot(out$beta[, , i], type = 'l', main = paste("species", i)) abline(h = beta[, i], col = 1:nrow(beta)) } plot(apply(out$beta, c(2, 3), mean), beta) abline(0, 1, col = "red")
plot(apply(out$sigma2, 2, mean), sigma2) abline(0, 1, col = "red")
layout(matrix(1:6, 3, 2)) plot_idx <- sample(1:N, 20) for (i in 1:5) { matplot(out$eta[, plot_idx, i], type = 'l', main = paste("species", i)) abline(h = eta[plot_idx, i], col = 1:20) } ## typically, tau2 is not identifiable plot(apply(out$tau2, c(2, 3), mean), tau2) abline(0, 1, col = "red")
runtime ## plot beta estimates dat_plot <- data.frame( beta = c( c(apply(out$beta, c(2, 3), mean)), c(beta) ), type = rep(c("estimate", "truth"), each = (J-1) * ncol(X)), species = factor(rep(1:(J-1), each = ncol(X))), variable = 1:ncol(X) ) p1 <- dat_plot %>% pivot_wider(names_from = type, values_from = beta) %>% ggplot(aes(x = estimate, y = truth)) + # scale_color_viridis_d(begin = 0, end = 0.8) + geom_point(alpha = 0.5) + facet_wrap(~ species, nrow = 8) + geom_abline(intercept = 0, slope = 1, col = "red") + ggtitle("Estimated vs. simulated beta") ## plot eta estimates dat_plot <- data.frame( eta = c( c(apply(out$eta, c(2, 3), mean)), c(eta_s) ), type = rep(c("estimate", "truth"), each = (J-1) * n), species = factor(rep(1:(J-1), each = n)), observations = 1:n ) p2 <- dat_plot %>% pivot_wider(names_from = type, values_from = eta) %>% ggplot(aes(x = estimate, y = truth)) + # scale_color_viridis_d(begin = 0, end = 0.8) + geom_point(alpha = 0.5) + facet_wrap(~ species, nrow = 8) + geom_abline(intercept = 0, slope = 1, col = "red") + ggtitle("Estimated vs. simulated eta") p1 + p2
if (file.exists(here::here("results", "pg-splm-mra-sample-preds.RData"))) { load(here::here("results", "pg-splm-mra-sample-preds.RData")) } else { ## now this is super fast preds <- predict_pg_splm_mra(out, X_s, X_oos, locs_s, locs_oos) save(preds, file = here::here("results", "pg-splm-mra-sample-preds.RData")) }
pi_pred_mean <- apply(preds$pi, c(2, 3), mean) eta_pred_mean <- apply(preds$eta, c(2, 3), mean) layout(matrix(1:2, 1, 2)) plot(eta_oos, eta_pred_mean) abline(0, 1, col = "red") plot(pi_oos, pi_pred_mean) abline(0, 1, col = "red")
## put data into data.frame for plotting dat <- data.frame( Y = c(rbind(Y_prop_s, Y_prop_oos)), lon = c(locs_s[, 1], locs_oos[, 1]), lat = c(locs_s[, 2], locs_oos[, 2]), species = factor(rep(1:J, each = N)), pi = c(rbind(pi_s, pi_pred_mean)), type = c(rep("observed", n), rep("predicted", N-n)) ) p_predicted <- ggplot(data = dat, aes(x = lon, y = lat, fill = pi)) + # p_predicted <- ggplot(data = dat, aes(x = lon, y = lat, fill = pi, alpha = type)) + geom_raster() + scale_fill_viridis_c() + facet_wrap(~ species) + # scale_alpha_discrete(range = c(0.6, 1)) + ggtitle("Predicted latent probability") + theme(legend.position = "none") p_simulated + p_observed + p_predicted
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.