pg_lm: Bayesian Polya-gamma regression

View source: R/pg_lm.R

pg_lmR Documentation

Bayesian Polya-gamma regression

Description

this function runs the Bayesian multinomial regression using Polya-gamma data augmentation

Usage

pg_lm(
  Y,
  X,
  params,
  priors,
  n_cores = 1L,
  inits = NULL,
  config = NULL,
  n_chain = 1
)

Arguments

Y

is a n x J matrix of compositional count data.

X

is a n x p matrix of climate variables.

params

is a list of parameter settings. The list params must contain the following values:

  • n_adapt: A positive integer number of adaptive MCMC iterations.

  • n_mcmc: A positive integer number of total MCMC iterations post adaptation.

  • n_thin: A positive integer number of MCMC iterations per saved sample.

  • n_message: A positive integer number of frequency of iterations to output a progress message. For example, n_message = 50 outputs progress messages every 50 iterations.

priors

is the list of prior settings.

n_cores

is the number of cores for parallel computation using openMP.

inits

is the list of intial values if the user wishes to specify initial values. If these values are not specified, then the intital values will be randomly sampled from the prior.

config

is the list of configuration values if the user wishes to specify initial values. If these values are not specified, then default a configuration will be used.

n_chain

is the MCMC chain id. The default is 1.


jtipton25/pgR documentation built on July 8, 2022, 12:44 a.m.