## test pg_splm_mra
## test pg_stlm_mra
# predict_pg_splm_mra ----------------------------------------------------------
test_that("predict_pg_splm_mra", {
# set.seed(2021)
# Y <- matrix(1:40, 10, 4)
# X <- cbind(1, as.matrix(1:10))
# locs <- matrix(runif(20), 10, 2)
# params <- default_params()
# priors <- default_priors_pg_splm_mra(Y, X)
# X_pred <- cbind(1, rnorm(5))
# locs_pred <- matrix(runif(10), 5, 2)
#
# # check the different MCMC settings
# suppressMessages(out <- pg_splm_mra(Y, X, locs, params, priors, M = 2, n_coarse_grid = 4))
# expect_snapshot_value(predict_pg_splm(out, X, X_pred, locs, locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE, progress = FALSE), style = "serialize")
#
# suppressMessages(out <- pg_splm(Y, X, locs, params, priors, corr_fun = "exponential", shared_covariance_params = FALSE))
# expect_snapshot_value(predict_pg_splm(out, X, X_pred, locs, locs_pred, corr_fun = "exponential", shared_covariance_params = FALSE, progress = FALSE), style = "serialize")
#
# priors <- default_priors_pg_splm(Y, X, corr_fun = "matern")
# suppressWarnings(suppressMessages(out <- pg_splm(Y, X, locs, params, priors, corr_fun = "matern", shared_covariance_params = TRUE)))
# expect_snapshot_value(predict_pg_splm(out, X, X_pred, locs, locs_pred, corr_fun = "matern", shared_covariance_params = TRUE, progress = FALSE), style = "serialize")
#
# suppressWarnings(suppressMessages(out <- pg_splm(Y, X, locs, params, priors, corr_fun = "matern", shared_covariance_params = FALSE)))
# expect_snapshot_value(predict_pg_splm(out, X, X_pred, locs, locs_pred, corr_fun = "matern", shared_covariance_params = FALSE, progress = FALSE), style = "serialize")
#
# # check the MCMC inputs
# expect_error(predict_pg_splm(out, cbind(X, 1), X_pred, locs, locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "The number of colums of X must be equal to the number of columns of beta in the object out")
# expect_error(predict_pg_splm(out, X, cbind(X_pred, 1), locs, locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "The number of colums of X_pred must be equal to the number of columns of beta in the object out")
# expect_error(predict_pg_splm(out, X, X_pred, cbind(locs, 1), locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "locs must be a numeric matrix with 2 columns")
# expect_error(predict_pg_splm(out, X, X_pred, locs, cbind(locs_pred, 1), corr_fun = "exponential", shared_covariance_params = TRUE), "locs_pred must be a numeric matrix with 2 columns")
# expect_error(predict_pg_splm(out, rbind(X, 1), X_pred, locs, locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "The number of rows of X must equal the number of rows of locs")
# expect_error(predict_pg_splm(out, X, rbind(X_pred, 1), locs, locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "X_pred and locs_pred must be numeric matrices with the same number of rows")
# expect_error(predict_pg_splm(out, X, X_pred, rbind(locs, 1), locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "The number of rows of X must equal the number of rows of locs")
# expect_error(predict_pg_splm(out, X, X_pred, locs, rbind(locs_pred, 1), corr_fun = "exponential", shared_covariance_params = TRUE), "X_pred and locs_pred must be numeric matrices with the same number of rows")
#
# X[1] <- NA
# expect_error(predict_pg_splm(out, X, X_pred, locs, locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "X must be a numeric matrix")
# X[1] <- "aa"
# expect_error(predict_pg_splm(out, X, X_pred, locs, locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "X must be a numeric matrix")
# X <- cbind(1, as.matrix(1:10))
# X_pred[1] <- NA
# expect_error(predict_pg_splm(out, X, X_pred, locs, locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "X_pred must be a numeric matrix")
# X_pred[1] <- "aa"
# expect_error(predict_pg_splm(out, X, X_pred, locs, locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "X_pred must be a numeric matrix")
# X_pred <- cbind(1, rnorm(5))
# locs[1] <- NA
# expect_error(predict_pg_splm(out, X, X_pred, locs, locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "locs must be a numeric matrix with 2 columns")
# locs[1] <- "aa"
# expect_error(predict_pg_splm(out, X, X_pred, locs, locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "locs must be a numeric matrix with 2 columns")
# locs <- cbind(1, as.matrix(1:10))
# locs_pred[1] <- NA
# expect_error(predict_pg_splm(out, X, X_pred, locs, locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "locs_pred must be a numeric matrix with 2 columns")
# locs_pred[1] <- "aa"
# expect_error(predict_pg_splm(out, X, X_pred, locs, locs_pred, corr_fun = "exponential", shared_covariance_params = TRUE), "locs_pred must be a numeric matrix with 2 columns")
# locs_pred <- matrix(rnorm(10), 5, 2)
#
#
# class(out) <- "aa"
# expect_error(predict_pg_splm(out, X), "The MCMC object out must be of class pg_splm which is the output of the pg_splm\\(\\) function.")
})
# predict_pg_stlm --------------------------------------------------------------
# predict_pgSTLM -- deprecated -------------------------------------------------
# predict_pg_spvlm -------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.