View source: R/fit-deep-MRA-sgd.R
fit_sgd | R Documentation |
Title
fit_sgd( y, locs, grid, y_obs = NULL, z = NULL, alpha = NULL, alpha_x1 = NULL, alpha_y1 = NULL, alpha_x2 = NULL, alpha_y2 = NULL, learn_rate = 0.001, rate_schedule = NULL, n_iter = 500, n_message = 50, penalized = FALSE, plot_during_fit = FALSE, use_spam = FALSE, adam_pars = NULL, use_adamw = TRUE, sparse_outer = TRUE, noisy = TRUE, ncores = 1L, nchunks = NULL )
y |
The data |
locs |
An N x 2 matrix of spatial locations |
grid |
A grid object that is the output of |
alpha |
If specified, the top layer MRA parameters |
alpha_x1 |
If specified, the first hidden layer MRA parameters for the x-axis variable |
alpha_y1 |
If specified, the first hidden layer MRA parameters for the y-axis variable |
alpha_x2 |
If specified, the second hidden layer MRA parameters for the x-axis variable |
alpha_y2 |
If specified, the second hidden layer MRA parameters for the y-axis variable |
learn_rate |
The gradient descent learning rate |
rate_schedule |
If specified, the gradient descent learning rate schedule in decreasing values. |
n_iter |
The number of gradient descent iterations |
n_message |
The number of iterations between which to output a message |
penalized |
Fit using a penalty term |
plot_during_fit |
Plot the current parameter states every |
use_spam |
Whether to use the spam ( |
adam_pars |
The adam parameter state to allow restarting the model |
use_adamw |
Use the adamW optimizer |
sparse_outer |
If |
noisy |
If |
ncores |
The number of cores to use for parallelization |
nchunks |
The number of chunks to divide the distance calculation into. The default argument of NULL will use the same number of chunks as the number of cores. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.