Description Usage Arguments Details Value References Examples
Compute the approximate confidence intervals of the parameters of a 4PL model based on the asymptotic normality of least squares estimators.
1 2 |
object |
An object of the dr4pl class |
parm |
Parameters of a 4PL model |
level |
Confidence level |
... |
Other parameters to be passed |
This function computes the approximate confidence intervals of the true parameters of a 4PL model based on the asymptotic normality of the least squares estimators in nonlinear regression. The Hessian matrix is used to obtain the second order approximation to the sum-of-squares loss function. Please refer to Subsection 5.2.2 of Seber and Wild (1989).
A matrix of the confidence intervals in which each row represents a parameter and each column represents the lower and upper bounds of the confidence intervals of the corresponding parameters.
Seber1989dr4pl
1 2 3 4 5 6 7 8 9 10 11 | obj.dr4pl <- dr4pl(Response ~ Dose, data = sample_data_1) # Fit a 4PL model to data
## Use the data 'sample_data_1' to obtain confidence intervals.
confint(obj.dr4pl) # 95% confidence intervals
confint(obj.dr4pl, level = 0.99) # 99% confidence intervals
theta <- FindInitialParms(x = sample_data_1$Dose, y = sample_data_1$Response)
# Use the same data 'sample_data_1' but different parameter estimates to obtain
# confidence intervals.
confint(obj.dr4pl, parm = theta)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.