knitr::opts_chunk$set( root.dir = normalizePath("./"), echo = TRUE, message = TRUE, warning = FALSE, error = TRUE ) library(dplyr) library(hablar) library(here) library(knitr) library(magrittr) library(purrr) library(readr) library(rJava) library(rmarkdown) library(rmdformats) library(shiny) library(snakecase) library(tabulapdf) library(tibble) library(tidyr) library(tidyverse) library(bwu)
patient <- params$patient
test <- params$test test_name <- params$test_name
# file <- file.path(file.choose()) # saveRDS(file, "wisc5.rds") # input_file_path <- readRDS("wisc5.rds") file <- file.path(params$file)
pages <- params$pages
tabulapdf
# This works well so far plucked_tables_wisc5 <- tabulapdf::extract_tables( file = file, pages = pages, output = "matrix", method = "stream", guess = TRUE ) # Save the entire list to an R data file save(plucked_tables_wisc5, file = "plucked_tables_wisc5.RData") # Load the entire list from an R data file load("plucked_tables_wisc5.RData")
library(dplyr) library(purrr) process_wisc_tables <- function(wisc5_data) { table_list <- purrr::map(wisc5_data, as_tibble) %>% set_names(paste0("table", 1:length(wisc5_data))) # Rename tables list2env(table_list, .GlobalEnv) # Assign to global environment } # Example Usage: process_wisc_tables(plucked_tables_wisc5) # Loop over the list and write each matrix to a CSV file for (i in seq_along(plucked_tables_wisc5)) { write.csv(plucked_tables_wisc5[[i]], file = paste0(test, "_", i, ".csv"), row.names = FALSE) } # # Save the entire list to an R data file # save(plucked_tables_wisc5, file = "plucked_tables_wisc5.RData") # # # Load the entire list from an R data file # load("plucked_tables_wisc5.RData")
names(table1) <- params$colnames1 # names(table1) <- c("domain", "scale", "abbrev", "raw_score", "score", "percentile", "age_equiv", "sem") table1 <- table1[3:18, 2:8] table1[1, 1] <- c("Similarities") table1[2, 1] <- c("Vocabulary") table1[3, 1] <- c("Information") table1[4, 1] <- c("Comprehension") table1[5, 1] <- c("Block Design") table1[6, 1] <- c("Visual Puzzles") table1[7, 1] <- c("Matrix Reasoning") table1[8, 1] <- c("Figure Weights") table1[9, 1] <- c("Picture Concepts") table1[10, 1] <- c("Arithmetic") table1[11, 1] <- c("Digit Span") table1[12, 1] <- c("Picture Span") table1[13, 1] <- c("Letter-Number Sequencing") table1[14, 1] <- c("Coding") table1[15, 1] <- c("Symbol Search") table1[16, 1] <- c("Cancellation") table1 <- table1 |> dplyr::select(all_of(params$keep1))
library(dplyr) # Function to replace "-" with NA and filter out rows with no real data filter_real_data <- function(table, key_columns) { table <- table %>% mutate(across(all_of(key_columns), ~ if_else(. == "-", NA_character_, as.character(.)))) %>% mutate(across(all_of(key_columns), as.numeric)) %>% filter(rowSums(is.na(select(., all_of(key_columns)))) < length(key_columns)) return(table) } # Assuming key_columns are those columns which must have data key_columns <- c("raw_score", "score", "percentile") # Extract and filter table1 table1_all_rows <- as_tibble(table1) # Ensure table1 is a tibble table1 <- filter_real_data(table1_all_rows, key_columns) # Print the filtered table print(table1)
table1 <- bwu::gpluck_make_columns( table1, test = params$test, test_name = params$test_name, ci_95 = "", range = "", domain = "", subdomain = "", narrow = "", pass = "Sequential", verbal = "Verbal", timed = "Untimed", test_type = "npsych_test", score_type = "scaled_score", description = "", result = "" ) # Test score ranges table1 <- bwu::gpluck_make_score_ranges( table = table1, test_type = "npsych_test" )
# Domain table1 <- table1 |> dplyr::mutate( domain = dplyr::case_when( scale == "Similarities" ~ "Verbal/Language", scale == "Vocabulary" ~ "Verbal/Language", scale == "Information" ~ "Verbal/Language", scale == "Comprehension" ~ "Verbal/Language", scale == "Block Design" ~ "Visual Perception/Construction", scale == "Visual Puzzles" ~ "Visual Perception/Construction", scale == "Matrix Reasoning" ~ "Visual Perception/Construction", scale == "Figure Weights" ~ "Visual Perception/Construction", scale == "Picture Concepts" ~ "Visual Perception/Construction", scale == "Arithmetic" ~ "Attention/Executive", scale == "Digit Span" ~ "Attention/Executive", scale == "Picture Span" ~ "Attention/Executive", scale == "Letter-Number Sequencing" ~ "Attention/Executive", scale == "Coding" ~ "Attention/Executive", scale == "Symbol Search" ~ "Attention/Executive", scale == "Cancellation" ~ "Attention/Executive", TRUE ~ as.character(domain) ) ) # Subdomain table1 <- table1 |> dplyr::mutate( subdomain = dplyr::case_when( scale == "Similarities" ~ "Reasoning", scale == "Vocabulary" ~ "Knowledge", scale == "Information" ~ "Knowledge", scale == "Comprehension" ~ "Reasoning", scale == "Block Design" ~ "Construction", scale == "Visual Puzzles" ~ "Visualization", scale == "Matrix Reasoning" ~ "Reasoning", scale == "Figure Weights" ~ "Reasoning", scale == "Picture Concepts" ~ "Reasoning", scale == "Arithmetic" ~ "Working Memory", scale == "Digit Span" ~ "Working Memory", scale == "Picture Span" ~ "Working Memory", scale == "Letter-Number Sequencing" ~ "Working Memory", scale == "Coding" ~ "Processing Speed", scale == "Symbol Search" ~ "Processing Speed", scale == "Cancellation" ~ "Attention", TRUE ~ as.character(subdomain) ) ) # Narrow table1 <- table1 |> dplyr::mutate( narrow = dplyr::case_when( scale == "Similarities" ~ "Word Reasoning", scale == "Vocabulary" ~ "Word Knowledge", scale == "Information" ~ "General World Knowledge", scale == "Comprehension" ~ "Acquired Knowledge", scale == "Block Design" ~ "Block Construction", scale == "Visual Puzzles" ~ "Visualization", scale == "Matrix Reasoning" ~ "Nonverbal Reasoning", scale == "Figure Weights" ~ "Quantitiative Reasoning", scale == "Picture Concepts" ~ "Nonverbal Reasoning", scale == "Arithmetic" ~ "Verbal Working Memory", scale == "Digit Span" ~ "Verbal Working Memory", scale == "Picture Span" ~ "Nonverbal Working Memory", scale == "Letter-Number Sequencing" ~ "Verbal Working Memory", scale == "Coding" ~ "Cognitive Efficiency", scale == "Symbol Search" ~ "Perceptual Speed", scale == "Cancellation" ~ "Attentional Fluency", TRUE ~ as.character(narrow) ) ) # PASS Model table1 <- table1 |> dplyr::mutate( pass = dplyr::case_when( scale == "Block Design" ~ "Simultaneous", scale == "Visual Puzzles" ~ "Simultaneous", scale == "Matrix Reasoning" ~ "Simultaneous", scale == "Figure Weights" ~ "Simultaneous", scale == "Picture Concepts" ~ "Simultaneous", scale == "Arithmetic" ~ "Attention", scale == "Digit Span" ~ "Attention", scale == "Picture Span" ~ "Attention", scale == "Letter-Number Sequencing" ~ "Attention", scale == "Cancellation" ~ "Attention", scale == "Coding" ~ "Planning", scale == "Symbol Search" ~ "Planning", TRUE ~ as.character(pass) ) ) ## Verbal vs Nonverbal table1 <- table1 |> dplyr::mutate( verbal = dplyr::case_when( scale == "Block Design" ~ "Nonverbal", scale == "Visual Puzzles" ~ "Nonverbal", scale == "Matrix Reasoning" ~ "Nonverbal", scale == "Figure Weights" ~ "Nonverbal", scale == "Picture Concepts" ~ "Nonverbal", scale == "Arithmetic" ~ "Verbal", scale == "Digit Span" ~ "Verbal", scale == "Picture Span" ~ "Nonverbal", scale == "Letter-Number Sequencing" ~ "Verbal", scale == "Cancellation" ~ "Nonverbal", scale == "Coding" ~ "Nonverbal", scale == "Symbol Search" ~ "Nonverbal", TRUE ~ as.character(verbal) ) ) ## Timed vs Untimed table1 <- table1 |> dplyr::mutate( timed = dplyr::case_when( scale == "Block Design" ~ "Timed", scale == "Visual Puzzles" ~ "Timed", scale == "Matrix Reasoning" ~ "Untimed", scale == "Figure Weights" ~ "Timed", scale == "Picture Concepts" ~ "Untimed", scale == "Arithmetic" ~ "Timed", scale == "Digit Span" ~ "Untimed", scale == "Picture Span" ~ "Untimed", scale == "Letter-Number Sequencing" ~ "Untimed", scale == "Cancellation" ~ "Timed", scale == "Coding" ~ "Timed", scale == "Symbol Search" ~ "Timed", TRUE ~ as.character(timed) ) )
table1 <- table1 |> dplyr::mutate( description = dplyr::case_when( scale == "Similarities" ~ "Verbal inductive reasoning", scale == "Vocabulary" ~ "Word/lexical knowledge", scale == "Information" ~ "Acquired knowledge/ability to acquire, retain, and retrieve general factual knowledge", scale == "Comprehension" ~ "Practical knowledge and judgment of general principles and social situations", scale == "Block Design" ~ "Understanding visual-spatial relationships to construct geometric designs from a model", scale == "Visual Puzzles" ~ "Generate visual images in the mind's eye", scale == "Matrix Reasoning" ~ "Inductive reasoning and nonverbal problem-solving", scale == "Figure Weights" ~ "General sequential (deductive) reasoning and quantitative reasoning", scale == "Picture Concepts" ~ "Reasoning and semantic matching", scale == "Arithmetic" ~ "Solving math word problems in working memory", scale == "Digit Span" ~ "Registering, maintaining, and manipulating auditory information", scale == "Picture Span" ~ "Maintenance and resequencing of progressively lengthier sets of pictures in spatial working memory", scale == "Letter-Number Sequencing" ~ "Maintenance and resequencing of progressively lengthier number and letter strings in working memory", scale == "Coding" ~ "Efficiency of psychomotor speed, visual scanning ability, and visual-motor coordination", scale == "Symbol Search" ~ "Visual-perceptual decision-making speed", scale == "Cancellation" ~ "Selective visual attention, visual discrimination, and visual-perceptual processing", TRUE ~ as.character(description) ) )
table1 <- table1 %>% dplyr::mutate( result = glue::glue( "{description} was {range}.\n" ) ) ## Relocate variables table1 <- table1 |> dplyr::relocate(c(raw_score, score, ci_95, percentile, range), .after = scale)
names(table2) <- params$colnames2 # names(table2) <- c("scale", "raw_score", "score", "percentile", "ci_95") table2 <- table2[4:9, ] table2[1, 1] <- c("Verbal Comprehension (VCI)") table2[2, 1] <- c("Visual Spatial (VSI)") table2[3, 1] <- c("Fluid Reasoning (FRI)") table2[4, 1] <- c("Working Memory (WMI)") table2[5, 1] <- c("Processing Speed (PSI)") table2[6, 1] <- c("Full Scale IQ (FSIQ)") table2 <- table2 |> dplyr::select(all_of(params$keep2))
library(dplyr) # Function to replace "-" with NA and filter out rows with no real data filter_real_data <- function(table, key_columns) { table <- table %>% mutate(across(all_of(key_columns), ~ if_else(. == "-", NA_character_, as.character(.)))) %>% mutate(across(all_of(key_columns), as.numeric)) %>% filter(rowSums(is.na(select(., all_of(key_columns)))) < length(key_columns)) return(table) } # Assuming key_columns are those columns which must have data key_columns <- c("raw_score", "score", "percentile") # Extract and filter table2 table2_all_rows <- as_tibble(table2) table2 <- filter_real_data(table2_all_rows, key_columns) # Print the filtered table print(table2)
table2 <- bwu::gpluck_make_columns( table2, test = params$test, test_name = params$test_name, ci_95 = "", range = "", domain = "General Cognitive Ability", subdomain = "", narrow = "", pass = "Sequential", verbal = "Verbal", timed = "Untimed", test_type = "npsych_test", score_type = "standard_score", description = "", result = "" ) # Test score ranges table2 <- bwu::gpluck_make_score_ranges( table = table2, test_type = "npsych_test" )
# Subdomain table2 <- table2 |> dplyr::mutate( subdomain = dplyr::case_when( scale == "Verbal Comprehension (VCI)" ~ "Crystallized Knowledge", scale == "Visual Spatial (VSI)" ~ "Visuospatial Processing", scale == "Fluid Reasoning (FRI)" ~ "Fluid Reasoning", scale == "Working Memory (WMI)" ~ "Working Memory", scale == "Processing Speed (PSI)" ~ "Processing Speed", scale == "Full Scale IQ (FSIQ)" ~ "General Intelligence", TRUE ~ as.character(subdomain) ) ) # Narrow table2 <- table2 |> dplyr::mutate( narrow = dplyr::case_when( scale == "Verbal Comprehension (VCI)" ~ "Crystallized Knowledge", scale == "Visual Spatial (VSI)" ~ "Visuospatial Processing", scale == "Fluid Reasoning (FRI)" ~ "Fluid Reasoning", scale == "Working Memory (WMI)" ~ "Working Memory", scale == "Processing Speed (PSI)" ~ "Processing Speed", scale == "Full Scale IQ (FSIQ)" ~ "General Intelligence", TRUE ~ as.character(narrow) ) ) ## Verbal vs Nonverbal table2 <- table2 |> dplyr::mutate( verbal = dplyr::case_when( scale == "Verbal Comprehension (VCI)" ~ "Verbal", scale == "Visual Spatial (VSI)" ~ "Nonverbal", scale == "Fluid Reasoning (FRI)" ~ "Nonverbal", # unless arithmetic too scale == "Working Memory (WMI)" ~ "", scale == "Processing Speed (PSI)" ~ "Nonverbal", scale == "Full Scale IQ (FSIQ)" ~ "", TRUE ~ as.character(verbal) ) ) ## Timed vs Untimed table2 <- table2 |> dplyr::mutate( timed = dplyr::case_when( scale == "Verbal Comprehension (VCI)" ~ "Untimed", scale == "Visual Spatial (VSI)" ~ "Timed", scale == "Fluid Reasoning (FRI)" ~ "", scale == "Working Memory (WMI)" ~ "Untimed", scale == "Processing Speed (PSI)" ~ "Timed", scale == "Full Scale IQ (FSIQ)" ~ "", TRUE ~ as.character(timed) ) )
table2 <- table2 |> dplyr::mutate( description = dplyr::case_when( scale == "Verbal Comprehension (VCI)" ~ "Verbal Comprehension (i.e., the ability to verbalize meaningful concepts, think about verbal information, and express oneself using words)", scale == "Visual Spatial (VSI)" ~ "Visual Spaital is not an independent factor", scale == "Fluid Reasoning (FRI)" ~ "Fluid Reasoning (i.e., the ability to use reasoning to identify and apply solutions to problems)", scale == "Working Memory (WMI)" ~ "Working Memory (*G*wm)", scale == "Processing Speed (PSI)" ~ "Processing Speed (*G*s)", scale == "Full Scale IQ (FSIQ)" ~ "General Intelligence (*g*)", scale == "General Ability (GAI)" ~ "A subset of intellectual functioning with reduced influences of working memory and processing speed", TRUE ~ as.character(description) ) )
table2 <- table2 |> dplyr::mutate( result = dplyr::case_when( scale == "Verbal Comprehension (VCI)" ~ glue::glue( "{description} was classified as {range} and ranked at the {percentile}th percentile.\n" ), scale == "Visual Spatial (VSI" ~ glue::glue( "{description} was classified as {range} and ranked at the {percentile}th percentile.\n" ), scale == "Fluid Reasoning (FRI)" ~ glue::glue( "{description} was classified as {range} and ranked at the {percentile}th percentile.\n" ), scale == "Working Memory (WMI)" ~ glue::glue( "{description} fell in the {range} range.\n" ), scale == "Processing Speed (PSI)" ~ glue::glue( "{description} was {range}.\n" ), scale == "Full Scale IQ (FSIQ)" ~ glue::glue( "{description} was {range} overall.\n" ), scale == "General Ability (GAI)" ~ glue::glue( "{description} was {range} and ranked at the {percentile}th percentile, indicating performance as good as or better than {percentile}% of same-age peers from the general population.\n" ), TRUE ~ as.character(result) ) ) ## Relocate variables table2 <- table2 |> dplyr::relocate(c(raw_score, score, ci_95, percentile, range), .after = scale)
names(table3) <- params$colnames2 # names(table3) <- c("scale", "abbrev", "raw_score", "score", "percentile", "ci_95", "category", "sem") table3 <- table3[c(6, 8:13), ] table3[1, 1] <- c("Verbal (Expanded Crystallized) (VECI)") table3[2, 1] <- c("Expanded Fluid (EFI)") table3[3, 1] <- c("Quantitative Reasoning (QRI)") table3[4, 1] <- c("Auditory Working Memory (AWMI)") table3[5, 1] <- c("Nonverbal (NVI)") table3[6, 1] <- c("General Ability (GAI)") table3[7, 1] <- c("Cognitive Proficiency (CPI)") # table3[1, 1] <- c("Naming Speed (NSI)") # table3[2, 1] <- c("Symbol Translation (STI)") # table3[3, 1] <- c("Storage & Retrieval (SRI)") table3 <- table3 |> dplyr::select(all_of(params$keep2))
library(dplyr) # Function to replace "-" with NA and filter out rows with no real data filter_real_data <- function(table, key_columns) { table <- table %>% mutate(across(all_of(key_columns), ~ if_else(. == "-", NA_character_, as.character(.)))) %>% mutate(across(all_of(key_columns), as.numeric)) %>% filter(rowSums(is.na(select(., all_of(key_columns)))) < length(key_columns)) return(table) } # Assuming key_columns are those columns which must have data key_columns <- c("raw_score", "score", "percentile") # Extract and filter table3 table3_all_rows <- as_tibble(table3) table3 <- filter_real_data(table3_all_rows, key_columns) # Print the filtered table print(table3)
table3 <- bwu::gpluck_make_columns( table3, test = params$test, test_name = params$test_name, ci_95 = "", range = "", domain = "General Cognitive Ability", subdomain = "", narrow = "", pass = "Sequential", verbal = "Verbal", timed = "Untimed", test_type = "npsych_test", score_type = "scaled_score", description = "", result = "" ) # Test score ranges table3 <- bwu::gpluck_make_score_ranges( table = table3, test_type = "npsych_test" )
table3 <- table3 |> mutate( domain = case_when( ## Ancillary scale == "Verbal (Expanded Crystallized) (VECI)" ~ "General Cognitive Ability", scale == "Expanded Fluid (EFI)" ~ "General Cognitive Ability", scale == "Quantitative Reasoning (QRI)" ~ "General Cognitive Ability", scale == "Auditory Working Memory (AWMI)" ~ "Attention/Executive", scale == "Nonverbal (NVI)" ~ "General Cognitive Ability", scale == "General Ability (GAI)" ~ "General Cognitive Ability", scale == "Cognitive Proficiency (CPI)" ~ "General Cognitive Ability", ## Complementary scale == "Naming Speed (NSI)" ~ "Verbal/Language", scale == "Symbol Translation (STI)" ~ "Memory", scale == "Storage & Retrieval (SRI)" ~ "Memory", TRUE ~ as.character(domain) ) ) # Subdomain table3 <- table3 |> mutate( subdomain = case_when( scale == "Auditory Working Memory (AWMI)" ~ "Working Memory", scale == "Cognitive Proficiency (CPI)" ~ "Executive Functioning", scale == "Expanded Fluid (EFI)" ~ "Fluid Intelligence", scale == "General Ability (GAI)" ~ "General Intelligence", scale == "Nonverbal (NVI)" ~ "Fluid Intelligence", scale == "Quantitative Reasoning (QRI)" ~ "Fluid Intelligence", scale == "Verbal (Expanded Crystallized) (VECI)" ~ "Crystallized Intelligence", scale == "Naming Speed (NSI)" ~ "Retrieval Fluency", scale == "Symbol Translation (STI)" ~ "Learning Efficiency", scale == "Storage & Retrieval (SRI)" ~ "Long-Term Storage and Retrieval", TRUE ~ as.character(subdomain) ) ) # Narrow table3 <- table3 |> mutate( narrow = case_when( scale == "Auditory Working Memory (AWMI)" ~ "Verbal Working Memory", scale == "Cognitive Proficiency (CPI)" ~ "Cognitive Efficiency", scale == "Expanded Fluid (EFI)" ~ "Fluid Intelligence", scale == "General Ability (GAI)" ~ "General Intelligence", scale == "Nonverbal (NVI)" ~ "Fluid Intelligence", scale == "Quantitative Reasoning (QRI)" ~ "Quantitative Reasoning", scale == "Verbal (Expanded Crystallized) (VECI)" ~ "Crystallized Intelligence", scale == "Naming Speed (NSI)" ~ "Naming Facility", scale == "Storage & Retrieval (SRI)" ~ "Retrieval Fluency", scale == "Symbol Translation (STI)" ~ "Learning Efficiency", TRUE ~ as.character(narrow) ) ) # PASS Model table3 <- table3 |> mutate( pass = case_when( scale == "General Ability (GAI)" ~ "", scale == "Cognitive Proficiency (CPI)" ~ "", scale == "Nonverbal (NVI)" ~ "Simultaneous", scale == "Auditory Working Memory (AWMI)" ~ "Sequential", scale == "Expanded Fluid (EFI)" ~ "Simultaneous", scale == "Quantitative Reasoning (QRI)" ~ "Simultaneous", scale == "Verbal (Expanded Crystallized) (VECI)" ~ "Sequential", scale == "Naming Speed (NSI)" ~ "Attention", scale == "Storage & Retrieval (SRI)" ~ "Simultaneous", scale == "Symbol Translation (STI)" ~ "Simultaneous", TRUE ~ as.character(pass) ) ) ## Verbal vs Nonverbal table3 <- table3 |> mutate( verbal = case_when( scale == "Auditory Working Memory (AWMI)" ~ "Verbal", scale == "Cognitive Proficiency (CPI)" ~ "", scale == "Expanded Fluid (EFI)" ~ "Nonverbal", scale == "General Ability (GAI)" ~ "", scale == "Nonverbal (NVI)" ~ "Nonverbal", scale == "Quantitative Reasoning (QRI)" ~ "", scale == "Verbal (Expanded Crystallized) (VECI)" ~ "Verbal", scale == "Naming Speed (NSI)" ~ "Verbal", scale == "Storage & Retrieval (SRI)" ~ "Verbal", scale == "Symbol Translation (STI)" ~ "Nonverbal", TRUE ~ as.character(verbal) ) ) ## Timed vs Untimed table3 <- table3 |> mutate( timed = case_when( scale == "Auditory Working Memory (AWMI)" ~ "Untimed", scale == "Cognitive Proficiency (CPI)" ~ "Timed", scale == "Expanded Fluid (EFI)" ~ "Untimed", scale == "General Ability (GAI)" ~ "Untimed", scale == "Nonverbal (NVI)" ~ "Timed", scale == "Quantitative Reasoning (QRI)" ~ "Timed", scale == "Verbal (Expanded Crystallized) (VECI)" ~ "Untimed", scale == "Naming Speed (NSI)" ~ "Timed", scale == "Storage & Retrieval (SRI)" ~ "Timed", scale == "Symbol Translation (STI)" ~ "Untimed", TRUE ~ as.character(timed) ) )
table3 <- table3 |> mutate( description = case_when( ## Ancillary scale == "Verbal (Expanded Crystallized) (VECI)" ~ "verbal concept formation, verbal reasoning, verbal comprehension and expression, acquired knowledge, and practical knowledge and judgment (expanded)", scale == "Expanded Fluid (EFI)" ~ "ability to use reasoning to identify and apply solutions to problems (expanded)", scale == "Quantitative Reasoning (QRI)" ~ "quantitative reasoning skills", scale == "Auditory Working Memory (AWMI)" ~ "auditory working memory processes supported by the phonological loop; ability to register, maintain, and manipulate verbally-presented information", scale == "Nonverbal (NVI)" ~ "general intellectual functioning that minimizes expressive language demands", scale == "General Ability (GAI)" ~ "a subset of intellectual functioning with reduced influences of working memory and processing speed", scale == "Cognitive Proficiency (CPI)" ~ "index of cognitive processing proficiency that reduces crystallzied knowledge, verbal reaoning, and fluid reasoning demands", ## Complementary scale == "Naming Speed (NSI)" ~ "automaticity of naming", scale == "Symbol Translation (STI)" ~ "visual-verbal associative memory", scale == "Storage & Retrieval (SRI)" ~ "ability to accurately and efficiently store and retrieve auditory and visual information fromlong-term memory", TRUE ~ as.character(description) ) )
table3 <- table3 %>% dplyr::mutate( result = glue::glue( "{description} was {range}.\n" ) ) ## Relocate variables table3 <- table3 |> dplyr::relocate(c(raw_score, score, ci_95, percentile, range), .after = scale)
wisc5 <- collapse::rowbind(table2, table3, table1, fill = TRUE) # wisc5 <- rbind(table2, table3, table1) # wisc5 <- rbind(table2, table3, table1, table4, table5)
readr::write_csv(wisc5, here::here("data", "csv", "wisc5.csv"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.