#' Estimates a Spatial AutoRegressive (SAR) lag model.
#'
#' \code{ntspreg} estimates a Spatial AutoRegressive (SAR) model (spatialreg::lagsarlm)
#' using the nearest neighbor spatial weights matrix you previously created
#' and a linear regression model.
#'
#' @param lmobj An object created by the \code{lm} function.
#' @param wm a list, which includes the spatial weights matrix, created by the \code{make_ntspmat}.
#' @return The output will be SAR model estimated.
#' @examples
#' \dontrun{
#' sar_reex <- ntspreg(ols,wm)
#' }
#' @import spdep
#' @export
ntspreg <- function(lmobj,wm) {
weights <- mat2listw(wm[[2]], row.names=NULL, style="W")
nblist <-weights$neighbours
listw <-nb2listw(nblist)
formula <- lmobj[["call"]][["formula"]]
df <- eval(wm[[1]])
lag = spatialreg::lagsarlm(formula, data=df, listw=listw ,method="eigen",zero.policy=TRUE, tol.solve=1.0e-10)
return(lag)
}
#' Estimates a Spatial error model (SEM) lag model.
#'
#' \code{ntsperr} estimates a Spatial error model (SEM) model (spatialreg::errorsarlm)
#' using the nearest neighbor spatial weights matrix you previously created
#' and a linear regression model.
#'
#' @param lmobj An object created by the \code{lm} function.
#' @param wm neighbor spatial weight matrix created by the \code{make_ntspmat}.
#' @return The output will be SAR model estimated.
#' @examples
#' \dontrun{
#' sdem_reex <- ntsperr(ols,wm)
#' }
#' @export
ntsperr <- function(lmobj,wm) {
weights <- mat2listw(wm[[2]], row.names=NULL, style="W")
nblist <-weights$neighbours
listw <-nb2listw(nblist)
formula <- lmobj[["call"]][["formula"]]
df <- eval(wm[[1]])
err = spatialreg::errorsarlm(formula, data=df, listw=listw ,method="eigen",zero.policy=TRUE, tol.solve=1.0e-11)
return(err)
}
#' Estimates a Spatial Autocorrelation (SAC) lag model.
#'
#' \code{ntspsac} estimates a Spatial Autocorrelation (SAC) model (spatialreg::sacsarlm)
#' using the nearest neighbor spatial weights matrix you previously created
#' and a linear regression model.
#'
#' @param lmobj An object created by the \code{lm} function.
#' @param wm neighbor spatial weight matrix created by the \code{make_ntspmat}.
#' @return The output will be SAR model estimated.
#' @examples
#' \dontrun{
#' sac_reex <- ntsperr(ols,wm)
#' }
#' @export
ntspsac <- function(lmobj,wm) {
weights <- mat2listw(wm[[2]], row.names=NULL, style="W")
nblist <-weights$neighbours
listw <-nb2listw(nblist)
formula <- lmobj[["call"]][["formula"]]
df <- eval(wm[[1]])
sac = spatialreg::sacsarlm(formula, data=df, listw=listw ,method="eigen",zero.policy=TRUE, tol.solve=1.0e-10)
return(sac)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.