find_best_lambda_index | R Documentation |
If the "lambda_idx" attribute in the given object is already available, simply return that value. Otherwise, we look at the performance metric and decide the "best" lambda index. If there is no validation set metric available, we simply return the last lambda index in the training set metric. When we have access to validation set metrics, we identify the lambda index that maximizes the (weighted) average of validation set metrics.
find_best_lambda_index(
multiSnpnetResults,
metric_name = NULL,
use_weight = TRUE,
traits = NULL,
force = FALSE
)
multiSnpnetResults |
a list containing the results of the multiSnpnet fit |
metric_name |
the name of the metric (metric_val or AUC_val) |
use_weight |
whether we should use trait weights when evaluating weighted average of the metric |
traits |
(optional) subset of traits |
force |
if TRUE, we recompute the best lambda index |
An integer denoting the best lambda index. If the validation set is available (by running check_if_metric_exists()), we return the lambda index that maximizes the validation set metric. If the AUC_val is availale, we use AUC_val instead of metric_val. We take the weighted average of the metric.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.