recall.at.prec | R Documentation |
Calculate maximum recall at given minimum precision
recall.at.prec(yr2, x = 0.9, monotonized = TRUE, balanced = FALSE)
yr2 |
the yogiroc2 object |
x |
the precision cutoff (default 0.9) |
monotonized |
whether or not to use monotonized PRC |
balanced |
whether or not to use prior-balancing |
#generate fake data
truth <- c(rep(TRUE,10),rep(FALSE,8))
scores <- cbind(
pred1=c(rnorm(10,1,0.2),rnorm(8,.9,0.1)),
pred2=c(rnorm(10,1.1,0.2),rnorm(8,.9,0.2))
)
#create yogiroc2 object
yrobj <- yr2(truth,scores)
#calculate R90P
recall.at.prec(yrobj)
#calculate non-monotonized R90P
recall.at.prec(yrobj,monotonized=FALSE)
#calculate balanced R90P
recall.at.prec(yrobj,balanced=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.