View source: R/pipeline_functions.R
draw.funcEnrich.cluster | R Documentation |
draw.funcEnrich.cluster
draws a cluster plot based on binary matrix, to visualize the existence of genes in the enriched gene sets.
The P-value of enrichment is also displayed in the plot.
draw.funcEnrich.cluster(
funcEnrich_res = NULL,
top_number = 30,
Pv_col = "Ori_P",
name_col = "#Name",
item_col = "Intersected_items",
Pv_thre = 0.1,
gs_cex = 0.7,
gene_cex = 0.8,
pv_cex = 0.7,
main = "",
h = 0.95,
inner_color = brewer.pal(9, "Reds")[3],
cluster_gs = TRUE,
cluster_gene = TRUE,
pdf_file = NULL,
use_genes = NULL,
return_mat = FALSE
)
funcEnrich_res |
data.frame, containing the result of functional enrichment analysis.
It is highly suggested to use |
top_number |
numeric, the number of top enriched gene sets to be displayed. Default is 30. |
Pv_col |
character, the name of the column in |
name_col |
character, the name of the column in |
item_col |
character, the name of the column in |
Pv_thre |
numeric, threshold of P-values. Genes or drivers with P-values lower than the threshold will be kept. Default is 0.1. |
gs_cex |
numeric, giving the amount by which the text of gene sets names should be magnified relative to the default. Default is 0.5. |
gene_cex |
numeric, giving the amount by which the text of gene symbols should be magnified relative to the default. Default is 0.8. |
pv_cex |
numeric, giving the amount by which the text of P-values should be magnified relative to the default. Default is 0.7. |
main |
character, an overall title for the plot. |
h |
numeric, the height where the cluster tree should be cut. The same parameter as |
inner_color |
character, the color code for the indexing box inside the main plot region. Could be one character or a character vector. If want to set the color by gene, could input the color code character with names set as genes. If want to set the color by Z-score, could use 'z2col' to generate the color code. Default is brewer.pal(9,'Reds')[3]. |
cluster_gs |
logical, if TRUE, gene sets will be clustered. Default is TRUE. |
cluster_gene |
logical, if TRUE, genes will be clustered. Default is TRUE. |
pdf_file |
character, the file path to save as PDF file. If NULL, no PDF file will be saved. Default is NULL. |
use_genes |
a vector of characters, a vector of gene symbols to display. If NULL, all the genes in the top enriched gene sets will be displayed. Default is NULL. |
return_mat |
logical, if TRUE, return a binary matrix. Rows are gene sets, columns are genes. Default if FALSE. |
If return_mat==FALSE
, return a logical value. If TRUE, plot has been created successfully.
If return_mat == TRUE
, return a binary matrix of the cluster. Rows are gene sets, columns are genes.
analysis.par <- list()
analysis.par$out.dir.DATA <- system.file('demo1','driver/DATA/',package = "NetBID2")
NetBID.loadRData(analysis.par=analysis.par,step='ms-tab')
ms_tab <- analysis.par$final_ms_tab
sig_driver <- draw.volcanoPlot(dat=ms_tab,label_col='gene_label',
logFC_col='logFC.G4.Vs.others_DA',
Pv_col='P.Value.G4.Vs.others_DA',
logFC_thre=0.4,
Pv_thre=1e-7,
main='Volcano Plot for G4.Vs.others_DA',
show_label=FALSE,
label_type = 'origin',
label_cex = 0.5)
gs.preload(use_spe='Homo sapiens',update=FALSE)
res1 <- funcEnrich.Fisher(input_list=ms_tab[rownames(sig_driver),'geneSymbol'],
bg_list=ms_tab[,'geneSymbol'],
use_gs=c('H','C5'),Pv_thre=0.1,Pv_adj = 'none')
draw.funcEnrich.cluster(funcEnrich_res=res1,top_number=30,gs_cex = 0.5,
gene_cex=0.9,pv_cex=0.8)
DA_Z <- z2col(ms_tab[rownames(sig_driver),'Z.G4.Vs.others_DA'],
blue_col=brewer.pal(9,'Blues')[3],
red_col=brewer.pal(9,'Reds')[3],col_max_thre=6)
names(DA_Z) <- ms_tab[rownames(sig_driver),'geneSymbol']
draw.funcEnrich.cluster(funcEnrich_res=res1,top_number=30,gs_cex = 0.5,
gene_cex=0.9,pv_cex=0.8,inner_color=DA_Z)
draw.funcEnrich.cluster(funcEnrich_res=res1,top_number=10,gs_cex = 0.6,
gene_cex=1,pv_cex=1,
cluster_gs=TRUE,cluster_gene = TRUE)
draw.funcEnrich.cluster(funcEnrich_res=res1,top_number=15,gs_cex = 0.8,
gene_cex=0.9,pv_cex=0.8,
cluster_gs=TRUE,cluster_gene = FALSE)
draw.funcEnrich.cluster(funcEnrich_res=res1,top_number=20,gs_cex = 0.8,
gene_cex=0.9,pv_cex=0.8,
cluster_gs=FALSE,cluster_gene = TRUE)
draw.funcEnrich.cluster(funcEnrich_res=res1,top_number=20,gs_cex = 1,
gene_cex=1,pv_cex=0.8,
cluster_gs=FALSE,cluster_gene = FALSE)
## Not run:
analysis.par <- list()
analysis.par$out.dir.DATA <- system.file('demo1','driver/DATA/',package = "NetBID2")
NetBID.loadRData(analysis.par=analysis.par,step='ms-tab')
ms_tab <- analysis.par$final_ms_tab
sig_driver <- draw.volcanoPlot(dat=ms_tab,label_col='gene_label',
logFC_col='logFC.G4.Vs.others_DA',
Pv_col='P.Value.G4.Vs.others_DA',
logFC_thre=0.4,
Pv_thre=1e-7,
main='Volcano Plot for G4.Vs.others_DA',
show_label=FALSE,
label_type = 'origin',
label_cex = 0.5)
gs.preload(use_spe='Homo sapiens',update=FALSE)
res1 <- funcEnrich.Fisher(input_list=ms_tab[rownames(sig_driver),'geneSymbol'],
bg_list=ms_tab[,'geneSymbol'],
use_gs=c('H','C5'),Pv_thre=0.1,Pv_adj = 'none')
analysis.par$out.dir.PLOT <- getwd() ## directory for saving the pdf files
draw.funcEnrich.cluster(funcEnrich_res=res1,top_number=30,gs_cex = 0.8,
gene_cex=0.9,pv_cex=0.8,
pdf_file = sprintf('%s/funcEnrich_cluster.pdf',
analysis.par$out.dir.PLOT))
draw.funcEnrich.cluster(funcEnrich_res=res1,top_number=30,gs_cex = 1.4,
gene_cex=1.5,pv_cex=1.2,
pdf_file = sprintf('%s/funcEnrich_clusterBOTH.pdf',
analysis.par$out.dir.PLOT),
cluster_gs=TRUE,cluster_gene = TRUE)
draw.funcEnrich.cluster(funcEnrich_res=res1,top_number=30,gs_cex = 0.8,
gene_cex=0.9,pv_cex=0.8,
pdf_file = sprintf('%s/funcEnrich_clusterGS.pdf',
analysis.par$out.dir.PLOT),
cluster_gs=TRUE,cluster_gene = FALSE)
draw.funcEnrich.cluster(funcEnrich_res=res1,top_number=30,gs_cex = 0.8,
gene_cex=0.9,pv_cex=0.8,
pdf_file = sprintf('%s/funcEnrich_clusterGENE.pdf',
analysis.par$out.dir.PLOT),
cluster_gs=FALSE,cluster_gene = TRUE)
draw.funcEnrich.cluster(funcEnrich_res=res1,top_number=30,gs_cex = 1.5,
gene_cex=1.4,pv_cex=1.2,
pdf_file = sprintf('%s/funcEnrich_clusterNO.pdf',
analysis.par$out.dir.PLOT),
cluster_gs=FALSE,cluster_gene = FALSE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.